Math, asked by sreenath9287, 8 months ago

If the sum of first ‘n’ terms in an AP is 4n2 + 3n, then what is the 7th term of this AP

Answers

Answered by syash9629
1

Answer:

hqhqjjeklakba ejskakwn w

Answered by SilentzKillerz
9

◘ Given ◘

Sum of first n terms of an AP is 4n² + 3n.

\sf{\longrightarrow S_n=4n^2+3n}

\underline{\rule{180}4}

◘ Objective ◘

To find the 7th term of this AP.

\underline{\rule{180}4}

◘ Solution ◘

We know,

\sf{S_1=a_1}

Putting the values :-

\sf{a_1=S_1=4(1)^2+3(1)}\\\\\sf{\longmapsto a_1=4+3}\\\\\sf{\longmapsto a_1=7}

___________

Similarly,

\sf{S_2=a_1+a_2}\\\\\sf{\longmapsto S_2=7+a_2}\\\\\sf{\longmapsto 4(2)^2+3(2)=7+a_2}\\\\\sf{\longmapsto 8+11=7+a_2}\\\\\sf{\longmapsto 19=7+a_2}\\\\\sf{\longmapsto a_2=19-7}\\\\\sf{\longmapsto a_2=12}\\

Common difference (d) = a₂ - a₁

\sf{\longmapsto  d = 12 - 7}

\sf{\longmapsto d = 5}

The 7th term of the AP is :-

\sf{a_7=a+(7-1)d}\\\\\sf{\longmapsto a_7=7+6(5)}\\\\\sf{\longmapsto a_7=7+30}\\\\\boxed{\sf{\color{navy}{\longmapsto a_7=37}}}

Therefore, the 7th term of this AP is 37.

Similar questions