if the sum of first n terms of an a.p is 4n^2-n,find the 12th term?
Answers
Answered by
30
Sum of first n term of an A.P is 4n² - n
Sn = 4n² - n
S ( n - 1 ) = 4 ( n - 1 )² - ( n - 1 )
S ( n - 1 ) = 4 ( n² - 2n + 1 ) - n + 1
S ( n - 1 ) = 4n² - 8n + 4 - n + 1
S ( n - 1 ) = 4n² - 9n + 5
To find nth term
an = Sn - S ( n - 1 )
an = 4n² - n - ( 4n² - 9n + 5 )
an = 4n² - n - 4n² + 9n - 5
an = 8n - 5
To find 12th term
an = 8n - 5
a12 = 8 × 12 - 5
a12 = 96 - 5
a12 = 91
Sn = 4n² - n
S ( n - 1 ) = 4 ( n - 1 )² - ( n - 1 )
S ( n - 1 ) = 4 ( n² - 2n + 1 ) - n + 1
S ( n - 1 ) = 4n² - 8n + 4 - n + 1
S ( n - 1 ) = 4n² - 9n + 5
To find nth term
an = Sn - S ( n - 1 )
an = 4n² - n - ( 4n² - 9n + 5 )
an = 4n² - n - 4n² + 9n - 5
an = 8n - 5
To find 12th term
an = 8n - 5
a12 = 8 × 12 - 5
a12 = 96 - 5
a12 = 91
Answered by
13
Sn = 4n² - n
Let n be 1
S1 = 4 - 1
S1 = 3
Let n = 2
S2 = 4 × 4 - 4
S2 = 16 - 4
S2 = 12
And a1 = S1
a1 = 3
a2 = S2 - S1
a2 = 12 - 3
a2 = 9
d ( common difference ) = a2 - a1
d = 9 - 3 = 6
an = a + ( n - 1 )d
a12 = 3 + 11 × 6
a12 = 3 + 66
a12 = 69
Let n be 1
S1 = 4 - 1
S1 = 3
Let n = 2
S2 = 4 × 4 - 4
S2 = 16 - 4
S2 = 12
And a1 = S1
a1 = 3
a2 = S2 - S1
a2 = 12 - 3
a2 = 9
d ( common difference ) = a2 - a1
d = 9 - 3 = 6
an = a + ( n - 1 )d
a12 = 3 + 11 × 6
a12 = 3 + 66
a12 = 69
Similar questions