Math, asked by jaintitiksha1236, 6 days ago

if the sum of first n terms of an Ap is 3n^2+2n the n th term is​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

Sum of first n terms of an AP series is

\rm \: S_n =  {3n}^{2} + 2n \\

Now, we know that,

\rm \: S_n = a_1 + a_2 + a_3 +  -  -  -  + a_{n - 1} + a_n \\

can be further rewritten as

\rm \: S_n = S_{n - 1} + a_n \\

\rm\implies \:a_n \:  =  \: S_n \:  -  \: S_{n - 1} \\

Now, we have

\rm \: S_n =  {3n}^{2} + 2n \\

So,

\rm \: S_{n - 1} =  {3(n - 1)}^{2} + 2(n - 1) \\

\rm \: =  \:3( {n}^{2} + 1 - 2n) + 2n - 2 \\

\rm \: =  \:3{n}^{2} + 3 - 6n + 2n - 2 \\

\rm \: =  \:3{n}^{2} - 4n  +  1 \\

So, on substituting the values in

\rm \: a_n \:  =  \: S_n \:  -  \: S_{n - 1} \\

we get

\rm \: a_n =  {3n}^{2} + 2n - ( {3n}^{2} - 4n + 1) \\

\rm \: a_n =  {3n}^{2} + 2n - {3n}^{2}  + 4n - 1 \\

\rm\implies \:a_n \:  =  \: 6n - 1 \\

\rule{190pt}{2pt}

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions