if the sum of first p terms of an A.P is equal to the sum of first q terms then show that the sum of its first (p+q) terms is zero (p≠q)
Answers
Answered by
0
Step-by-step explanation:
S
p
=S
q
⇒
2
p
(2a+(p−1)d)=
2
q
(2a+(q−1)d)
⇒ p(2a+(p−1)d)=q(2a+(q−1)d)
⇒ 2ap+p
2
d−pd=2aq+q
2
d−qd
⇒ 2a(p−q)+(p+q)(p−q)d−d(p−q)=0
⇒ (p−q)[2a+(p+q)d−d]=0
⇒ 2a+(p+q)d−d=0
⇒ 2a+((p+q)−1)d=0
⇒ S
p+q
=0
Similar questions
French,
1 day ago
Sociology,
1 day ago
India Languages,
2 days ago
Math,
2 days ago
Math,
8 months ago