Math, asked by pratimapatar579, 10 months ago

If the sum of firt in terms of an AP be n and
the sum of its first in terms be m then show
that the sum of its first on in terms is (m +n)term is -m+n

Answers

Answered by amitkumar44481
2

Correct QuestioN :

In an A.P, the sum of m terms of an AP is n and sum of n terms of AP is m, then prove that sum of (m+n) terms of AP is - ( m + n )

To ProvE :

Sm + n = - ( m + n )

SolutioN :

 \tt \dagger \:  \:  \:  \:  \:  S_n = \dfrac{n}{2}\Bigg[2a+(n- 1 )d \Bigg]

Where as,

  • Sn → Sum of nth terms.
  • a → First term.
  • d → Common difference.

☛ Case 1.

 \tt \dagger \:  \:  \:  \:  \:  S_m= \dfrac{m}{2}\Bigg[2a+(m- 1 )d \Bigg]

 \tt  : \implies n= \dfrac{m}{2}\Bigg[2a+(m- 1 )d \Bigg]

 \tt  : \implies n= \dfrac{m}{2}\Bigg[2a+(m- 1 )d \Bigg]

 \tt  : \implies n= \dfrac{m}{2}\Bigg[2a+md- d  \Bigg]

 \tt  : \implies  \dfrac{ 2n}{m}= \Bigg[2a+md- d \Bigg] \:  \:  \:  - (1)

☛ Case 2.

 \tt \dagger \:  \:  \:  \:  \:  S_n = \dfrac{n}{2}\Bigg[2a+(n- 1 )d \Bigg]

 \tt  : \implies  m = \dfrac{n}{2}\Bigg[2a+(n- 1 )d \Bigg]

 \tt  : \implies   \dfrac{2m}{n}= \Bigg[2a+nd- d \Bigg]  \:  \:  \: - (2)

Now,

Subtract Equation ( 2 ) From ( 1 ) We get.

 \tt  : \implies   \dfrac{ 2n}{m} -  \dfrac{2m}{n} = \Bigg[2a+md- d \Bigg] -  \Bigg[2a+nd- d \Bigg]

 \tt  : \implies   \dfrac{ 2n}{m} -  \dfrac{2m}{n} = \Bigg[(2a- d )+ md \Bigg] -  \Bigg[(2a - d) + nd\Bigg]

 \tt  : \implies   \dfrac{ 2n}{m} -  \dfrac{2m}{n} = (2a- d )+ md -  (2a - d)  -  nd

 \tt  : \implies   \dfrac{ 2n}{m} -  \dfrac{2m}{n} = \cancel{ (2a- d )}+ md \cancel{ -  (2a - d) } -  nd

 \tt  : \implies   \dfrac{ 2n}{m} -  \dfrac{2m}{n} = md  -  nd

 \tt  : \implies   \dfrac{ 2 {n}^{2}  - 2 {m}^{2}  }{mn} =d( m  -  n)

 \tt  : \implies   \dfrac{ 2(n + m)(n - m) }{mn} =d( m  -  n)

 \tt  : \implies   \dfrac{  - 2(n + m) }{mn} =d \:  \:  \:  - (3)

✎ Sum of ( m + n ) th

 \tt \dagger \:  \:  \:  \:  \:  S_{m + n} = \dfrac{m + n}{2}\Bigg[2a+(m + n- 1 )d \Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[2a+(m - 1 )d + nd \Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[ \dfrac{2n}{m}  + nd \Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[ \dfrac{2n}{m}  + \cancel{ n} \bigg( \dfrac{ - 2(n + m)}{m \cancel{n}}   \bigg)\Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[ \dfrac{2n}{m}  +  \bigg( \dfrac{ - 2(n + m)}{m}   \bigg)\Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[ \dfrac{2n-2(n+m)}{m}  \Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[ \dfrac{2n-2n - 2m}{m}  \Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2}\Bigg[ \dfrac{ - 2m}{m}  \Bigg]

 \tt  : \implies S_{m + n} = \dfrac{m + n}{2} \times -  2

 \tt  : \implies S_{m + n} =   - (m + n)

Hence Proved.

Similar questions