Math, asked by pksgupta3126, 6 months ago

If the sum of infinite gp is 9/4 and the second term is 1/2 find the series

Answers

Answered by sapabce97
2

Step-by-step explanation:

hope u will understand

Attachments:
Answered by Syamkumarr
0

Answer:

The series is either  \frac{3}{2} , \frac{1}{2}  , \frac{1}{6} , . . . . or  \frac{3}{4} , \frac{1}{2}  , \frac{1}{3} , . . . .

Step-by-step explanation:

Given that the sum of infinite GP = \frac{9}{4}

and the second term = \frac{1}{2}

We know that sum of an infinite GP = \frac{a}{1-r}

where a = First term

           r = Common ratio , r < 1

On substituting the values, we get,

\frac{9}{4} =  \frac{a}{1-r}

=> 9(1 - r) = 4a

=> 9 - 9r = 4a

=> a =  \frac{9-9r}{4}

We know that the nth term of a GP = a rⁿ⁻¹

where a = First term

           r = Common ratio

           n = Number of terms

On substituting the values, we get,

\frac{1}{2} = a * r²⁻¹

=> \frac{1}{2} = a * r

=> 1 = 2ar

Substituting the value of a above,

=> 1 = 2 \frac{9-9r}{4} *r

=> 2 = r(9-9r)

=> 2 = 9r - 9r²

=> 9r² - 9r + 2 = 0

=> 9r² - 6r - 3r + 2 = 0

=> 3r(3r - 2) -1(3r - 2) = 0

=> (3r - 1) (3r - 2) = 0

either 3r - 1 = 0  or 3r - 2 = 0

=> r = 1/3 or r = 2/3

Case 1 : if r = 1/3,

a =  \frac{9-9r}{4} =  \frac{9-9(\frac{1}{3} )}{4} =  \frac{9-3}{4} =  \frac{6}{4} =  \frac{3}{2}

Then the GP =  a, ar , ar² , . . . .

                     =  \frac{3}{2} , \frac{3}{2} * \frac{1}{3} , \frac{3}{2} * ( \frac{1}{3}

                     = \frac{3}{2} , \frac{1}{2}  , \frac{1}{6} , . . . .

Case 2 : if r = 2/3,

a =  \frac{9-9r}{4} =  \frac{9-9(\frac{2}{3} )}{4} =  \frac{9-6}{4} =  \frac{3}{4}

Then the GP =  a, ar , ar² , . . . .

                     =  \frac{3}{4} , \frac{3}{4} * \frac{2}{3} , \frac{3}{4} * ( \frac{2}{3}

                     = \frac{3}{4} , \frac{1}{2}  , \frac{1}{3} , . . . .

Therefore, the series is either  \frac{3}{2} , \frac{1}{2}  , \frac{1}{6} , . . . . or  \frac{3}{4} , \frac{1}{2}  , \frac{1}{3} , . . . .

Similar questions