Math, asked by sairam31020y, 7 months ago

If the sum of infinite series 1+4x+7x^2+10x^3+.......=35/16 then x is​

Answers

Answered by amansharma264
5

EXPLANATION.

 \sf :  \implies \: 1 + 4x + 7 {x}^{2}  + 10 {x}^{3} ......... =  \dfrac{35}{16}

 \sf :  \implies \:  s_{ \infty } \:  = 1 + 4x + 7 {x}^{2}  + 10 {x}^{3}  \:  \:  \:  \: ......(1) \\  \\ \sf :  \implies \: x s_{ \infty } \:  = x + 4 {x}^{2} + 7 {x}^{3}   + 10 {x}^{4}  \:  \:  \:  \: ......(2) \\  \\ \sf :  \implies \: subtract \: equation \:  \: (1) \:  \: and \:  \: (2) \\  \\ \sf :  \implies  \: (1 - x) s_{ \infty } \:  = 1 + 3x + 3 {x}^{2} + 3 {x}^{3}   ......  \infty

\sf :  \implies \: first \: term \:  = a \:  = 3x \\  \\ \sf :  \implies \: common \: ratio \:  = r \:  = x \\  \\ \sf :  \implies \: sum \: of \: an \: infinite \: series \: of \: gp \\  \\ \sf :  \implies \:  s_{ \infty } \:  =  \frac{a}{1 - r}  \:  \: for \:  \:  |x| < 1

\sf :  \implies \: (1 - x) s_{ \infty } \:  = 1 +  \dfrac{3x}{(1 - x)}  \\  \\ \sf :  \implies \:  s_{ \infty } \:  =  \frac{35}{16}  \\  \\ \sf :  \implies \: (1 - x) \frac{35}{16} =  \frac{1 + 2x}{1 - x}  \\  \\ \sf :  \implies \: 35(1 - x) {}^{2}   = 16(1 + 2x)

\sf :  \implies \: 35(1 +  {x}^{2}  - 2x) = 16 + 32x \\  \\ \sf :  \implies \: 35 + 35 {x}^{2} - 70x = 16 + 32x \\  \\  \sf :  \implies \: 35 {x}^{2}  - 102x + 19 = 0 \\  \\ \sf :  \implies \: 35 {x}^{2}  - 95x - 7x + 19 = 0

\sf :  \implies \: 5x(7x - 19) - 1(7x - 19) = 0 \\  \\ \sf :  \implies \: (7x - 19)(5x - 1) = 0 \\  \\ \sf :  \implies \: x \:  =  \frac{19}{7}  \:  \:  \: and \:  \:  \: x =  \frac{1}{5}

\sf :  \implies \: x \:  \ne \:  \dfrac{19}{7}  \:  \: because \:  s_{ \infty } \:  =  |x|  < 1 \\  \\ \sf :  \implies \: x \:  =  \frac{1}{5}  = answer


mddilshad11ab: Perfect explaination ✔️
Answered by Anonymous
108

S = 1 + 4x + 7 {x}^{2}  + 10 {x}^{3}  +  ....... \infty  =  > AGP

xS = x + 4 {x}^{2}  + 7 {x}^{3}  + ....... \infty

 \red{S(1 - n) = 1 + 3 + 3 {x}^{2} + 3 {x}^{3} + 3 {x}^{4} + ......... \infty    }

 \red{S(1 - 3) = 1 + 3x(1 + x -  {x}^{2} +  {x}^{3}  ....... \infty )}

 \red{ \frac{35}{16} (1 - x) = 1 -  \frac{x +  3x}{1 - x}  =  \frac{1 + 2x}{1 - x} }

 \red{35(1 - x {)}^{2}  = 16(1 + 2x)}

 \red{35(1 +  {x}^{2} - 2x) = 16 + 32 x }

 \red{35 {x}^{2} - 70x + 35 = 16 + 32x }

 \boxed{  \color{lime} 35 {x}^{2}  -  {10}^{2} + 19 = 0 }

35 {x}^{2}  - 95x + 7x + 19 = 0

5x(7x - 19x) - 1(7x - 19) = 0

n =  \frac{1}{5} ,  \frac{19}{7}

mddilshad11ab: Nice:)
Similar questions