Math, asked by yashlimbachiya900, 11 months ago

If the sum of m terms is n and the sum of n terms is m then show that sum of first m+ n terms is -(m+n) ​

Answers

Answered by reenagup
0

Answer:

the answer will be -m+(-n)

Answered by Alcaa
0

Answer:

Sum of first (m + n) terms of AP is - (m+n). ​

Step-by-step explanation:

We know that Sum of n terms of AP, S_n=\frac{n}{2} [2a+(n-1)d]  where, a = First term and d = common difference.

We are given that sum of m terms is n and the sum of n terms is m.

Sum of m terms of an AP, S_m = \frac{m}{2} [2a+(m-1)d]

                            n = \frac{m}{2} [2a+(m-1)d]

                           2n = 2am +m(m-1)d

                           2n = 2am +(m^{2} -m)d ---------- [Equation 1]

Sum of n terms of an AP, S_n = \frac{n}{2} [2a+(n-1)d]

                            m = \frac{n}{2} [2a+(n-1)d]

                           2m = 2an +n(n-1)d

                           2m = 2an +(n^{2} -n)d ---------- [Equation 2]

Subtract equation 2 from 1, we get;

        2n-2m = 2am +(m^{2} -m)d -  2an- (n^{2} -n)d

        2(n-m) = 2a(m-n) +((m^{2} -n^{2}) -(m-n))d

        -2(m-n) = 2a(m-n) +((m+n)(m-n) -(m-n))d

Taking (m - n) common from right side of equation;

        -2(m-n) = (m-n)(2a +((m+n) -1)d

                -2 = 2a +((m+n) -1)d

Multiply both sides by \frac{m+n}{2} we get,

                 -2*\frac{(m+n)}{2}  = \frac{m+n}{2}* [2a +((m+n) -1)d]

                   \frac{m+n}{2} [2a +((m+n) -1)d] = -(m+n)

The left side of equation is the formula for sum of first (m+n) terms of AP which comes out to be -(m+n) .

Similar questions