if the sum of money become 13/4 times in 2 years under an annual compounded annually, find the rate of compound interest.
Answers
Answered by
1
Answer:
Step-by-step explanation:
Let sum=x
Time=2years
Let rate=r%p.a
Amount=13/4x
now,
A=P+CI
CI=P(1+r/100)^n
=x(1+r/100)^2
So,
A= x(1+r/100)^2+x
13/4x=x(1+r/100)^2+x
=x(1^2+r^2/100^2+2×r/100×1)+x=13/4x
=x(r^2/10000+1+r/50)=13/4x-x
=(r^2+10000+200r)/10000=9/4x×1/x
r^2+10000+200r=9/4×10000
r^2+200r+10000=2500×9
r^2+200r=22500-10000
r^2+200r=12500
r^2+200r-12500=0
r^2+250r-50r-12500=0
r(r+250)-50(r+250)=0
(r+250)(r-50)=0
r+250=0
r=-250
r-50=0
r=50%p.a
as r%couldn't be negative r%=50%
Similar questions