Math, asked by chandrakanthamand123, 5 months ago

if the sum of n terms of an A. P is 2mn + pn2 where m and p are constant. Find the common difference​

Answers

Answered by MagicalBeast
13

\sf \bold {Question\::}

If the sum of n terms of an A. P is 2mn + pn² where m and p are constant. Find the common difference.

\sf \bold {Given\::}\: \sf S_{n}  =\:2mn\:+\:pn^{2}

\sf \bold{To\:find\::}\:\:common difference = d (let)\\\\\sf \bold {Formula\:used\::}\:\sf S_{n}\:=\:(\frac{n}{2})(\:2a\:+\:(n-1)d\:)

Here

\bullet n = nth term

\bullet a = 1st term

\bullet d = common difference

\bullet\sf S_{n} = sum\:of\:n\:terms\\\\\\\sf \bold {Solution\::}\\\\As\:we\:know,\\\\\implies\sf S_{n}\:=\:(\frac{n}{2})(\:2a\:+\:(n-1)d\:)\\\\\implies \sf S_{n}\:=\: (\dfrac{n}{2} )(\:2a\:+\: nd - d)\\\\\\\implies \sf S_{n}\:=\:\dfrac{(n\times 2a)+(n\times nd)\:-\:(n \times d)}{2}\\\\\\\implies \sf S_{n}\:=\:\dfrac{2an\:+dn^{2} \:-\:nd}{2}\\\\\\\implies \sf S_{n}\:=\:\dfrac{(2an-\:nd)\:+dn^{2} \:}{2}\\\\\\\implies \sf S_{n}\:=\:\dfrac{(2an-\:nd) }{2}+\:\dfrac{dn^{2}}{2} .....(equation 1) \\

Also ,we are given that,

\bullet \sf S_{n}  =\:2mn\:+\:pn^{2}......(equation 2)

\sf Putting\:value\:of\:S_{n} , from\: equation\:1\:to\:equation\:2\\\sf We\:get\:,\\\\\sf \dfrac{(2an-\:nd) }{2}+\:\dfrac{dn^{2}}{2}\:=\:2mn\:+\:pn^{2}

On comparison, we get

\sf \dfrac{dn^{2}}{2}\:=\:pn^{2}

{as coefficient of n² will be same}

\implies \sf  \dfrac{d}{2}\:=\:p\\\\\implies \sf d\:=\:p\times2\\\\\implies \sf d\:=\:2p\\

\sf \bold {ANSWER\::}\: common\: difference, \:\sf \bold{d\:=\:2p}

Similar questions