Math, asked by sheshappahr17111998, 11 months ago

If the sum of n terms of an A.P. is 2n^2 + 5n, then find the 4th term

Answers

Answered by Anonymous
16

\large\green{\underline{\boxed{ a4 = 19}}}

Given:-

Sn = 2n² + 5n

To find:-

4 th term .

Solution:-

Replacing n by (n - 1) ,we get

S(n -1) = 2 {(n - 1)}^{2}  + 5(n - 1)

\implies 2( {n}^{2}  + 1 - 2n) + 5(n - 1)

\implies s (n - 1) = 2 {n}^{2}  + 2 - 4n + 5n - 5

\implies s(n - 1) = 2 {n}^{2}    + n - 3

Now,

\boxed{\sf\red{ an = Sn - S(n-1) }}

\implies an = 2 {n}^{2}  + 5n - (2 {n}^{2}  + n - 3)

\implies an = 2 {n}^{2}  + 5n -  2{n}^{2}  - n + 3

\implies an = 4n + 3

put n = 4 we get,

\implies a4 = 4 \times 4 + 3

\implies a4 = 19

hence, the 4 th term of A. P is 19.

Answered by Brainlyconquerer
21

Answer:

\huge{\bold{\mathsf{A_4 = 19  }}}

Step-by-step explanation:

\underline{\underline{\bold{\mathfrak{Given:}}}}

S_n =2{n}^{2} + 5n

\underline{\underline{\bold{\mathfrak{To\:find:}}}}

\boxed{\bold{\mathsf{4rth\:term\:of\:the\:A.P\:}}}

That is: \bold{\mathsf{A_4 = a + (n-1)d  }}

\rule{200}{1}

\huge{\boxed{\bold{\mathrm{Now\:put\:n\:=\:1\:in\:S_n}}}}

\bold{\mathsf{S_1 = 2(1)^{2} + 5(1) = 2 + 5 = 7  }}

Sum of first term will be first term itself

°•° \implies{\boxed{\bold{\mathsf{ S_1 = A_1= 7 } }}}

\huge{\boxed{\bold{\mathrm{Now\:put\:n\:=\:2\:in\:S_n}}}}

\bold{\mathsf{  S_2= 2(2)^{2} + 5(2) = 8 + 10 = 18}}

\huge{\boxed{\bold{\mathrm{As\:we\:know\:that\:}}}}

\bold{\mathsf{S_2 = A_1 + A_2  }}

\bold{\mathsf{ 18 = 7 + A_2 }}

\bold{\mathsf{ A_2 = 11 }}

\underline{\bold{\mathsf{Now\:to\:find\:d\:(common\:difference)}}}

Apply

\bold{\mathsf{A_2 - A_1 = d  }}

\underline{\bold{\mathsf{Put\:in\:the\:values\:}}}

\bold{\mathsf{d= 11 - 7 = 4 }}

Now put in to get \bold{\mathsf{  A_4}}th term of the A.P

\bold{\mathsf{A_n = a + (n-1)d  }}

\bold{\mathsf{  A_4 = 7 + (4-1)4}}

\bold{\mathsf{A_4 = 7 + 12 = 19  }}

Hence we get \bold{\mathsf{A_4 = 19  }}

\rule{200}{1}

\boxed{\underline{\underline{\bold{\mathfrak{Formula\:Used}}}}}

\bold{\mathsf{A_n = a + (n-1)d  }}

\bold{\mathsf{S_1 = A_1  }} in any A.P

Similar questions