Math, asked by mahi07940, 1 year ago

If the sum of n terms of an AP is 2n² + 5n, then its nth term is​

Answers

Answered by arshbbcommander
11

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

 <font color="Purple">

 <font size="3">

\huge{\boxed{\boxed{HEY}}}

 <font color="Black">

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

\bold\red{♡FollowMe♡}

 <font color="blue">

\huge\underline\mathscr{Answer}

 <font color="Black">

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

 <marquee direction="down" bgcolor="black">

⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️

 </marquee>

Sum of 1 terms = a = 2(1)² + 5(1)

=2+5=7

Sum of 2 terms =

a+a2 = 2(2)² + 5(2)

a2 = 8 + 10 - 7

a2=11

d= a2 - a=11-7 = 4

a'n =a +(n-1)d = 7 +(n-1)4

a'n= 7+4n-4 = 3+4n

 <marquee direction="up" bgcolor="black">

⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️

 </marquee>

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

...Hope it helps....

Answered by Anonymous
35

S_{n} = 2n² + 5n

Take n = 1

=> S_{1} = 2(1)² + 5(1)

=> 2 + 5

=> 7

Take n = 2

S_{2} = 2(2)² + 5(2) - 7

=> 8 + 10 - 7

=>18 - 7

=> 11

Take n = 3

S_{3} = 2(3)² + 5(3) - 18

=> 18 + 15 - 18

=> 15

AP : 7, 11, 15 ....

Now,

We have to find the nth term of an AP.

So,

a_{n} = a + (n - 1)d

We have

  • First term (a) = 7
  • Common difference (d) = 11 - 7 = 4

So,

a_{n} = 7 + (n - 1)4

=> 7 + 4n - 4

=> 3 + 4n

3 + 4n is the nth term of an AP.

Similar questions