if the sum of 'N' terms of an AP is 3n2
-2n. find the nth term of that AP
Answers
EXPLANATION.
Sum of n terms of an A.P. = 3n² - 2n.
As we know that,
⇒ Tₙ = Sₙ - Sₙ₋₁.
Using this formula in equation, we get.
⇒ 3n² - 2n - [3(n - 1)² - 2(n - 1)].
⇒ 3n² - 2n - [3(n² + 1 - 2n) - 2n + 2].
⇒ 3n² - 2n - [3n² + 3 - 6n - 2n + 2].
⇒ 3n² - 2n - [3n² - 8n + 5].
⇒ 3n² - 2n - 3n² + 8n - 5.
⇒ - 2n + 8n - 5.
⇒ 6n - 5. = Algebraic expression.
Put the value of n = 1 in equation, we get.
⇒ 6(1) - 5.
⇒ 6 - 5.
⇒ 1.
Put the value of n = 2 in equation, we get.
⇒ 6(2) - 5.
⇒ 12 - 5.
⇒ 7.
Put the value of n = 3 in equation, we get.
⇒ 6(3) - 5.
⇒ 18 - 5.
⇒ 13.
Put the value of n = 4 in equation, we get.
⇒ 6(4) - 5.
⇒ 24 - 5.
⇒ 19.
Series = 1, 7, 13, 19,,,,,,,
First term = a = 1.
Common difference = d = b - a = c - b.
Common difference = d = 7 - 1 = 13 - 7.
Common difference = d = 6.
As we know that,
General term of an A.P.
⇒ Tₙ = a + (n - 1)d.
⇒ Tₙ = 1 + (n - 1)6.
⇒ Tₙ = 1 + (6n - 6).
⇒ Tₙ = 1 + 6n - 6.
⇒ Tₙ = 6n - 5.
MORE INFORMATION.
Relation between A.M. & G.M. & H.M.
If A, G, H are A.M , G.M , H.M between any two numbers.
(1) = A ≥ G ≥ H (equality holds when all terms are equal ).
(2) = G² = AH.
(3) = If A and G are A.M , G.M respectively between two positive numbers, then these numbers are,
A + √A² - G² , A - √A² - G².
Question:-
- If the sum of 'N' terms of an AP is 3n² - 2n. Find the nth term of that AP.
Solution:-
Now ,
Take n = 1 in equation , then we get:-
Take n = 2 in equation , then we get:-
- Series = 1 , 7 , 13 , 19
Common difference = b - a
Common difference = 7 - 1
Common difference = 6
Arithmetic Progression formula
Tn = a + ( n - 1 )d
Tn = 1 + ( n - 1 )6
Tn = 1 + 6n - 6
Tn = 6n - 5