Math, asked by vraj9062, 10 months ago


If the sum of n terms of an AP is Sn = 3n2 + 5 then a100 -a99 =6

Answers

Answered by sanjeevk28012
1

The value of  a_1_0_0  -  a_9_9  is 1 .

Step-by-step explanation:

Given as :

For Arithmetic Progression

Sum of n terms of an A.P = 3 n² + 5

S_n  = \dfrac{n}{2} [ 2 a + ( n - 1 ) d ]

where   a is the first term

             d is the difference

For n = 1

S_n  =  3 n² + 5

  S_1     = 3 ×1² + 5

  S_1     = 8

So, First term = a = 8

For n = 2

S_n  = 3 × 2² + 5

 S_2  = 12 + 5

  S_2 = 17

So, Sum of Second term = 17

Again

Sum of second term = First term + second term

second term = Sum of second term - First term

                       = S_2 - a

                       = 17 - 8  = 9

 So, Second term = 9

∴  Common difference = Second term - first term

                                  d = 9 - 8

Or,                               d = 1

So, The common difference = d = 1

Again ,

∵   nth term = a_n  = a + ( n -1 ) d

Now, For n = 100 term

        a_1_0_0 = a + (100 - 1)d

               = a + 99 × d

               = a + 99 d

∴    a_1_0_0 =   a + 99 d

And For n = 99 term

        a_9_9 = a + (99 - 1)d

               = a + 98 × d

  ∴  a_9_9  = a + 98 × d

Now,

The value of     a_1_0_0  -  a_9_9  = (a + 99 d)  - ( a + 98 d)

                                           = ( a - a) + (99 d - 98 d)

                                            = 0 + d

∴  a_1_0_0  -  a_9_9  = d = 1

Hence, The value of  a_1_0_0  -  a_9_9  is 1 . Answer

Answered by jitumahi435
2

a_{100} -a_{99 } = 1

Step-by-step explanation:

Given,

S_n = 3n^2 + 5

To find, a_{100} -a_{99 } = ?

Put n = 1, 2, 3, 4, 5, ........

S_1 = 3(1)^2 + 5 = 3 + 5 = 8

S_1 = First term (a) = 8

S_2 = 3(2)^2 + 5 = 12 + 5 = 17

S_2 =  First term + Second term = 17

⇒ Second term = 17 - 8 = 9

∴ Common difference = Second term - First term

= 9 - 8

= 1

a_{100} = a + 99d and

a_{99} = a + 98d

a_{100} -a_{99 } = a + 99d  - (a + 98d)

= a + 99d  - a - 98d

= d

= 1

a_{100} -a_{99 } = 1

Similar questions