if the sum of one term is 2 and the sum of the two-term is 0 the sum of 100 terms is?
Answers
Answer:
Explanation :
✦ Given :–
- S₁=2 (Sum of first one term)
- S₂=0 (Sum of first two terms)
✦ To Find :–
- S₁₀₀ (Sum of First 100 Terms)
✦ Formula Applied :–
- Sₙ=[2a+(n-1)d]
- aₙ=a+(n-1)d
✦ Solution :–
→ S₁=a
∴ a=2
→ S₂=a₁+a₂
∴ 0=2+a₂
⇒ a₂=(-2)
→ d=a₂-a₁=0-2=(-2)
∴ d=(-2)
Now we need to find S₁₀₀ :
∴ The Sum of first 100 terms is (-9700).
Step-by-step explanation:
Answer:
\bigstar\:\:\:\huge\boxed{S_{100}=\:-9700}\:\:\:\bigstar★
S
100
=−9700
★
Explanation :
✦ Given :–
S₁=2 (Sum of first one term)
S₂=0 (Sum of first two terms)
✦ To Find :–
S₁₀₀ (Sum of First 100 Terms)
✦ Formula Applied :–
Sₙ=\frac{n}{2}
2
n
[2a+(n-1)d]
aₙ=a+(n-1)d
✦ Solution :–
→ S₁=a
∴ a=2
→ S₂=a₁+a₂
∴ 0=2+a₂
⇒ a₂=(-2)
→ d=a₂-a₁=0-2=(-2)
∴ d=(-2)
Now we need to find S₁₀₀ :
\implies S_{100}=\frac{100}{2} [2(2)+(100-1)(-2)]⟹S
100
=
2
100
[2(2)+(100−1)(−2)]
\implies S_{100}=50\times [4+(99)(-2)]⟹S
100
=50×[4+(99)(−2)]
\implies S_{100}=50\times [4-198]⟹S
100
=50×[4−198]
\implies S_{100}=50\times(-194)⟹S
100
=50×(−194)
\implies \boxed{S_{100}=(-9700)}⟹
S
100
=(−9700)
∴ The Sum of first 100 terms is (-9700).