Math, asked by pankajverma152, 4 months ago

If the sum of p terms of an A.P. is 4p2+ 3p, find its nth term.

Answers

Answered by mathdude500
1

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}  \: (2\:a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Also,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Gɪᴠᴇɴ :

\rm :\implies\:S_p \:  =  {4p}^{2}  + 3p

Tᴏ Fɪɴᴅ :

\rm :\implies\:a_{n} \: term \: of \: the \: sequence.

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

 \green{\rm :\implies\:S_p \:  =  {4p}^{2}  + 3p}

\rm :\implies\:\dfrac{p}{2} (2a + (p - 1)d) =  {4p}^{2}  + 3p

\rm :\implies\:\dfrac{p}{2} (2a + (p - 1)d) =  p({4p}  + 3)

\rm :\implies\:2a + pd - d \:  = 8p + 6

\rm :\implies\:(2a - d) + pd  \:  = 8p + 6

On comparing, we get

\rm :\implies\: \boxed{ \pink{ \bf \:  d\:  =  \tt \: 8}}

and

\rm :\implies\:2a - d = 6

\rm :\implies\:2a - 8= 6

\rm :\implies\:2a = 14

\rm :\implies\: \boxed{ \pink{ \bf \: a \:  =  \tt \: 7 }}

So,

↝ nᵗʰ term of an arithmetic sequence is,

\rm :\implies\:a_{n} = a + (n - 1)d

\rm :\implies\:a_{n} = 7 + (n - 1)8

\rm :\implies\:a_{n} = 7 + 8n - 8

\rm :\implies\:a_{n} = 8n - 1

Hence,  nᵗʰ term of an arithmetic sequence is,

\rm :\implies\:  \underline{ \large\boxed{ \pink{ \bf \:  a_{n}\:  =  \tt \: 8n - 1}}}

Similar questions