Math, asked by divu83071, 7 months ago

if the sum of roots of quadratic equation x^2 - (k + 6)x + 2(2k - 1) = 0 is equal to half of their product then find the value of k​

Answers

Answered by AdorableMe
29

The given quadratic equation is :-

x² - (k + 6)x + 2(2k - 1) = 0

We know,

◘ Sum of zeros, S = -(Coefficient of x) / Coefficient of x²

S = -b/a

◘ Product of zeros, P = Constant term / Coefficient of x²

→ P = c/a

_____________________

Sum = -b/a

\sf{\longrightarrow S=\dfrac{-[-(k+6)]}{1} }

\sf{\longrightarrow S=k+6 }

_____________________

Product = c/a

\sf{\longrightarrow P=\dfrac{2(2k-1)}{1} }

\sf{\longrightarrow P=2(2k-1) }

_____________________

A/q,

→ S = P/2

Putting the values :-

\sf{\longrightarrow k+6=\dfrac{2(2k-1)}{2} }

\sf{\longrightarrow k+6=2k-1}

\sf{\longrightarrow 6+1=2k-k}

\sf{\longrightarrow 7=k}

\bf{\longrightarrow k=7}

Therefore, the value of k is 7.

Answered by EnchantedGirl
32

\underline{\red{Given:-}}

\\

  • The sum of roots of quadratic equation x² - (k + 6)x + 2(2k - 1) = 0 is equal to half of their product .

\\

\underline{\blue{To\:Find:-}}

\\

  • The value of k

\\

\underline{\pink{SOLUTION:-}}

\\

Formula :-

\\

✧ \sf \orange{Sum \:of \:zeros, S = -(Coefficient \:of \:x) / Coefficient \:of \:x²}

\boxed{S = -b/a}

\\

✧ \sf \orange{Product \:of \:zeros,\: P = Constant\: term / Coefficient \:of \:x²}

\boxed{ P = c/a}

\\

Now,

\\

Sum = -b/a

\\

\sf{:\implies S=\dfrac{-[-(k+6)]}{1} }

\\

\sf{:\implies  S=k+6 }

\\

And,

\\

Product = c/a

\sf{➜ P=\dfrac{2(2k-1)}{1} }\\\\\\ \sf{➜ P=2(2k-1) }

\\

A/q,

→ S = P/2

\\

Substituting the values :-

\\

\sf{:\implies k+6=\dfrac{2(2k-1)}{2} }\\\\\\</p><p>	\sf{:\implies k+6=2k-1}\\\\\\

\\

\sf{:\implies 6+1=2k-k}\\\\\\</p><p>\sf{:\implies 7=k}\\\\</p><p>\underline{\boxed{\pink{\bf{\longrightarrow k=7}}}}

\\

Therefore, the value of k is 7.

______________________________________

Similar questions