Math, asked by suresh7257, 3 months ago

If the sum of roots of the equation x2 - (k + 6 ) x + 2 (2k-1) = 0
is equal to half of their product, then find the value of k.​

Answers

Answered by amansharma264
183

EXPLANATION.

Quadratic equation.

⇒ x² - (k + 6)x + 2(2k - 1) = 0.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -[-(k + 6)]/1 = (k + 6).

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = 2(2k - 1)/1 = 2(2k - 1).

Sum of the roots of the equation is equal to half of their products.

⇒ (α + β) = 1/2 x (αβ).

⇒ (k + 6) = 1/2 x [2(2k - 1)].

⇒ 2(k + 6) = 2(2k - 1).

⇒ 2k + 12 = 4k - 2.

⇒ 2k + 12 - 4k + 2 = 0.

⇒ - 2k + 14 = 0.

⇒ 2k = 14.

⇒ k = 7.

                                                                                                                           

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Anonymous
69

Solution :-

\bf x^2 - (k+6)x+2(2k-1)

Here

a = -k + 6

b = 1

c =2(2k + 1)

Sum of zeroes

\sf \alpha + \beta =\dfrac{-(-k+6)}1

Now

\sf \alpha +\beta = \dfrac{k+6}1

\sf \alpha +\beta = k+6

Product of zeroes

\alpha \beta = \sf \dfrac{2(2k+1)}{1}

\sf \alpha \beta =2(2k+1)

Now

According to the question

\sf k + 6 =\dfrac{2(2k-1)}{2}

\sf k + 6 = 2k + 1

\sf 2k - k = 6+1

\sf k=7

Similar questions