Math, asked by afrid86, 1 year ago

if the sum of squares of the roots of x square +px-3 is 10 then p=​

Answers

Answered by joker123454
1

hey friend your answer is here

hope it helps you

Attachments:

misshasina: Check the answers and confirm it which one is right
joker123454: sorry for the mistake
misshasina: Its okay
Answered by BraɪnlyRoмan
21
\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}


 \boxed{ \underline{ \bf{Given : }}}

p(x) = {x}^{2} +p x - 3

Sum of the squares of the roots of p(x) = 10.


 \boxed{ \underline{ \bf{To \: \: Find : p }}}


 \boxed{ \underline{ \bf{ Process \: : }}}


Let the zeroes of the p(x) be \alpha \: and \: \beta


Now,

Sum of the zeroes = \frac{-b}{a}

 \implies \: \alpha \: + \: \beta \: = \: \frac{ - b}{a}

 \implies \alpha \: + \: \beta \: = \: \frac{ - \: p}{1} \: = p \: \: \: \rightarrow(1)


Product of zeroes = \frac{c}{a}

 \implies \: \alpha \times \beta \: = \frac{c}{a}

 \implies \: \alpha \times \beta \: = \frac{ - \: 3}{1} \: = \: - 3 \: \: \: \rightarrow \: (2)


Now A/Q,

 \implies \: { \alpha }^{2} \: + \: { \beta }^{2} = \: 10

 \implies \: {( \alpha \: + \: \beta )}^{2} - 2 \alpha \beta \: = \: 10

 \implies \: {( - p)}^{2} - \: 2( - \: 3) \: = \: 10

 \implies \: {p}^{2} \: + \: 6 \: = \: 10

 \implies \: {p}^{2} = \: 4

 \boxed{ \bf{ \therefore \: p \: = \: 2 \: \: or \: \: p \: = \: - 2}}
Similar questions