Math, asked by Laasya09, 9 months ago

If the sum of the AP; 48, 44, 40, 36, ......... upto n terms is –168, then the value of n is

Answers

Answered by shivpatel123
4

Hii dear this

Is simple question

Attachments:
Answered by BrainlyPopularman
17

GIVEN :

• An A.P. Series : 48 , 44 , 40 , 36 , ...........up to n terms.

• Sum of given A.P. = - 168

TO FIND :

Value of 'n' = ?

SOLUTION :

If first term of A.P. is 'a' and common difference is 'd' , Then sum of n terms –

 \\  \implies \large{ \boxed{ \bold{ S_{n} = \dfrac{n}{2}[2a + (n - 1)d] }}} \\

• Put the values –

 \\  \implies { \bold{  - 168 =\dfrac{n}{2}[2(48) + (n - 1)( - 4)]}} \\

 \\  \implies { \bold{  - 168 =\dfrac{n}{2}[96  - 4n  + 4]}} \\

 \\  \implies { \bold{  - 168 =n( 50  - 2n )}} \\

 \\  \implies { \bold{  0= 168 + 50n  - 2n^{2} }} \\

 \\  \implies { \bold{n^{2} - 25 n - 84=0}} \\

 \\  \implies { \bold{n^{2} - 28 n + 3n - 84=0}} \\

 \\  \implies { \bold{n(n-28)+3(n-28)}}=0 \\

 \\  \implies { \bold{(n+3)(n-28)=0}} \\

 \\  \implies { \bold{n=28,n=-3(rejected)}} \\

 \\  \implies \large{ \boxed { \bold{n= 28}}} \\

Similar questions