if the sum of the cubes of zeroes of the polynomial x³ -5x²+k²x+8 is 71 then √k can be
Answers
Answered by
1
sum of the cubes of zeroes of the polynomial x³ -5x²+k²x+8 is 71 then K = √2
Step-by-step explanation:
x³ -5x²+k²x+8
if p , q , r are roots then
p + q + r = 5
pqr = -8
pq+pr+qr = k²
(p + q + r)³ = p³ + q³ + r³ + 3 (p + q)(q + r) (p + r)
=> 5³ = 71 + 3(5 - r)(5 - p)(5 - q)
=> 125 = 71 + 3 ( 25 + pr - 5p - 5r)(5 - q)
=> 54 = 3 ( 125 - 25q + 5pr - pqr - 25p +5pq - 25r + 5qr)
=> 18 = 125 - 25(P + q + r) - pqr + 5 (pq + pr + qr)
=> 18 = 125 - 25*5 + 8 + 5k²
=> 5k² = 10
=> k² = 2
=> k = √2
Similar questions