Math, asked by seemasanjaysingh2141, 6 months ago

if the sum of the deviations of a set of values x1 x2 x3 ...........xn measured from 50 is -10 and the sum of deviations of the values from 46 is 70 then find its mean​

Answers

Answered by mathdude500
4

Answer:

Please find the attachment

Attachments:
Answered by rocky200216
19

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • If the sum of the deviations of a set of values \bf{x_1\:,\:x_2\:,\:x_3\:........\:x_n\:} measured from 50 is -10 .

  • And the sum of deviations of the values from 46 is 70 .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The value of it's mean .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}} \\

☯︎ According to the question,

ᴄᴀsᴇ - 1 ;-

✈︎ The sum of the deviations of a set of values \bf{x_1\:,\:x_2\:,\:x_3\:........\:x_n\:} measured from 50 is -10 .

 \\ \bf{:\implies\:x_1\:-\:50\:+\:x_2\:-\:50\:+..........\:+\:x_n\:-\:50\:=\:-\:10\:} \\

 \\ \bf{:\implies\:x_1\:+\:x_2\:+..........\:+\:x_n\:-\:50n\:=\:-\:10\:} \\

 \\ \bf{:\implies\:x_1\:+\:x_2\:+..........\:+\:x_n\:=\:50n\:-\:10\:}----(1) \\ \\

ᴄᴀsᴇ - 2 ;-

✈︎ The sum of deviations of the values from 46 is 70 .

 \\ \bf{:\implies\:x_1\:-\:46\:+\:x_2\:-\:46\:+..........\:+\:x_n\:-\:46\:=\:70\:} \\

 \\ \bf{:\implies\:x_1\:+\:x_2\:+..........\:+\:x_n\:-\:46n\:=\:70\:} \\

 \\ \bf{:\implies\:x_1\:+\:x_2\:+..........\:+\:x_n\:=\:70\:+\:46n\:}----(2) \\ \\

☞︎︎︎ From equation (1) & (2), we get

 \\ \bf{:\implies\:50n\:-\:10\:=\:70\:+\:46n\:} \\

 \\ \bf{:\implies\:50n\:-\:46n\:=\:70\:+\:10\:} \\

 \\ \bf{:\implies\:4n\:=\:80\:} \\

 \\ \bf{:\implies\:n\:=\:\dfrac{80}{4}\:} \\

 \\ \bf\green{:\implies\:n\:=\:20\:} \\ \\

♪ We know that,

{\color{aqua}\bigstar}\:\bf{\pink{\overbrace{\underbrace{\blue{Mean\:=\:\dfrac{x_1\:+\:x_2\:+..........\:+\:x_n}{n}\:}}}}} \\ \\

☞︎︎︎ Putting the value of \bf{x_1\:+\:x_2\:+........+\:x_n} in the above equation from equation (1), we get

 \\ \bf{:\implies\:Mean\:=\:\dfrac{50n\:-\:10}{20}\:} \\

 \\ \bf{:\implies\:Mean\:=\:\dfrac{50\times{20}\:-\:10}{20}\:} \\

 \\ \bf{:\implies\:Mean\:=\:\dfrac{1000\:-\:10}{20}\:} \\

 \\ \bf{:\implies\:Mean\:=\:\dfrac{990}{20}\:} \\

 \\ \bf\green{:\implies\:Mean\:=\:49.5\:} \\ \\

\huge\purple\therefore The Mean is '49.5' .

Similar questions