Math, asked by singhyuvraj3478, 10 months ago

If the sum of the first 12 terms of an a.p is 468 and its common difference is 6. find the 10th term.

Answers

Answered by Anonymous
7

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Sum of first 12 terms of an AP is 468.

  • Common difference is 6

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The 10th term.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

\purple\longrightarrow  \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d)

 \:\:

  •  \rm S_n \: = \: sum \: of \: n \: terms.

  •  \rm a \: = \: First \: term \: of \: the AP

  •  \rm d \: = \: common \: difference \: of \: the \: AP

 \:\:

 \sf \longmapsto 468 = \dfrac { 12} { 2 } (2a + (12 - 1)6)

 \:\:

 \sf \longmapsto 468 = 6(2a + 66)

 \:\:

 \sf \longmapsto 78 = 2a + 66

 \:\:

 \sf \longmapsto 2a = 12

 \:\:

 \sf \longmapsto a = \dfrac { 12 } { 2 }

 \:\:

 \bf\longmapsto a = 6

 \:\:

Hence first term is 6

 \:\:

 \underline{\bold{\texttt{For 10th term:}}}

 \:\:

\purple\longrightarrow  \sf a_n = a + (n - 1)d

 \:\:

 \sf \longmapsto 10th \: term \: = 6 + (10 - 1)6

 \:\:

 \sf \longmapsto 10th \: term \: = 6 + 54

 \:\:

 \bf\longmapsto 10th \: term \: = 60

\rule{200}5

Answered by nidhirandhawa7
1

Answer:

the answer is

Step-by-step explanation:

60

pls make it brainlest answer

Similar questions