If the sum of the first 14 terms of an AP is 1050 and its first term is 10 find the 20th term
Answers
Answered by
5
n/2[2a+(n-1)d]=1050
= 14/2[20+13d]=1050
= 7[20+13d]=1050
= 20+13d=1050/7
= 20+13d=150
= 13d=130
d=10
20th term = a+19d
= 10+19 * 10
= 10+190
= 200
= 14/2[20+13d]=1050
= 7[20+13d]=1050
= 20+13d=1050/7
= 20+13d=150
= 13d=130
d=10
20th term = a+19d
= 10+19 * 10
= 10+190
= 200
Answered by
2
Sn=n/2[2a+(n-1)d]
here a=10,n=14 Sn=1050
S14=14/2[2(10)+(14-1)d]
1050=7(20+13d)
1050/7=20+13d
150=20+13d
150-20=13d
130=13d
d=130/13
d=10.
tn=a+(n-1)d
t20=10+(20-1)10
=10+19*10.
=10+190
t20 = 200
here a=10,n=14 Sn=1050
S14=14/2[2(10)+(14-1)d]
1050=7(20+13d)
1050/7=20+13d
150=20+13d
150-20=13d
130=13d
d=130/13
d=10.
tn=a+(n-1)d
t20=10+(20-1)10
=10+19*10.
=10+190
t20 = 200
Similar questions