Math, asked by rampamdurga40, 5 months ago

If the sum of the first 14 terms of an AP is 1050 and its first term is 10.
find the 20th term.
Solution : Hers
15​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{sum \: of \: first \: 14 \: terms \: is \: 1050} \\ &\sf{first \: term \: is \: 10} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{ {20}^{th}  \: term \: of \: ap}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf Formula \:  Used-  \begin{cases} &\sf{S_n \:  = \dfrac{n}{2}(2a \:  + (n - 1)d) } \\ &\sf{a_n = a + (n - 1)d} \end{cases}\end{gathered}\end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

  • Sₙ is sum of first n term.

Solution :-

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a = 10} \\ &\sf{n = 14}\\ &\sf{S_{14} = 1050} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  Let :-  \begin{cases} &\sf{common \: difference \: be \: d}  \end{cases}\end{gathered}\end{gathered}

\tt \:  ⟼S_{14} = 1050

\tt\implies \:7\dfrac{ \cancel{14}}{\cancel2} ( 2 \times 10 + (14 - 1) \times d) = 1050

\tt\implies \:20 + 13d = \dfrac{1050}{7}

\tt\implies \:20 + 13d = 150

\tt\implies \:13d = 130

 \large \boxed{\tt\implies \:d \:  = 10}

\tt \:  ⟼Now,  \: a_{20} \:  = a \:  + (20 - 1)d

\tt \:  ⟼ a_{20} = 10 + 19 \times 10

\tt \:  ⟼ \: a_{20} \:  = 10 + 190

 \large \boxed{\tt \:  ⟼ \: a_{20} = 200}

Similar questions