Math, asked by anshi86, 1 year ago

if the sum of the first 2n terms of the AP series 2,5 ,8......... is equal to the sum of the first n terms of the AP series 57 ,59,61.......then n is equal to ​

Answers

Answered by Brainlyconquerer
1

Step-by-step explanation:

We are given that

Two A.P series \boxed{\mathsf{ 2,5 ,8.........}}

let sum be \bf{\mathsf{ {S}_{2n} }}

\boxed{\mathsf{57 ,59,61.......}}

let its sum be as \bf{\mathsf{ S_n }}

According to Question

\implies{\mathsf{S_{2n} = S_n }}

Using Sum formula ,

\boxed{\implies{\mathsf{ S_n = \frac{n}{2} \times (2n - 1)\times D}}}

\implies{\mathsf{\frac{2n}{2}[2 \times 2 + (2n -1) \times 3 ] = \frac{n}{2}[2 \times 57 + (n -1) \times 2 }}

\implies{\mathsf{2\times [4 + 6n - 3] = (114 +2n - 2)}}

\implies{\mathsf{ (4 + 6n -3) = 1/2 \times (114 +2n -  2)  }}

\implies{\mathsf{ 6n + 1 = 57 + n - 1  }}

\implies{\mathsf{ 6n - n = 57 - 1}}

\implies{\mathsf{ 5n = 55 }}

\boxed{\huge{\mathsf{ n = 11 }}}

\rule{200}{2}

\implies{\underline{\mathcal{What \:is \:A.P \:?  }}}

A.P stands for Airthematic progression

Its an type of sequence in which the every next terms follows a specific pattern that is common difference

Similar questions