If the sum of the first 7 terms of an A.P is 49 and that of 17 terms is 289. Then find the sum
of the first n terms.
Answers
Step-by-step explanation:
Sn = n/2[2a +(n-1) d]
49 = 7/2[2a +6(d) ].
98/7 = 2a +6d.......(1)
Sn = n/2[2a +(n-1) d]
289 = 17/2 [2a +16(d) ].
478/17 = 2a +16d.......(2)
(2) - (1) =>
10d = 478/17 - 98/7
10d = 3348 - 1666/119
10d = 1682/119
d = 1.41
98/7 = 2a +6d
98/7 = 2a + 8.46
14 - 8.46 = 2a
a = 2.77
Sum of first n terms is=>
Sn = n/2 [5.54 + 1.41n - 4.13]
Sn = n/2 [4.13 + 1.41n]
Step-by-step explanation:
Let a and d respectively be the first term and common difference of the AP.
begin mathsize 12px style straight S subscript 7 space end subscript equals 49 space equals space 7 over 2 open parentheses 2 straight a space plus space 6 straight d close parentheses space rightwards double arrow space 7 space equals space straight a space plus space 3 straight d space space space space.... left parenthesis 1 right parenthesis
straight S subscript 17 space equals space 289 space equals space 17 over 2 open parentheses 2 straight a space plus space 16 straight d close parentheses space rightwards double arrow space 17 space equals space straight a space plus space 8 straight d space......... left parenthesis 2 right parenthesis
Solving space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma space we space get
straight d space equals space 2 comma space straight a space equals space 1
straight S subscript straight n space equals space straight n over 2 open square brackets 2 cross times 1 space plus space open parentheses straight n minus 1 close parentheses cross times 2 close square brackets space equals space straight n squared end style