if the sum of the first 8 and 19 terms of an AP are 64 and 361 respectively, find the d and the sum of n terms of the series.
Answers
Answer: d=2 and sum of n terms = n²
Step-by-step explanation:
let the first term be a and the common difference be d
∴A.T.Q
8/2[2a+(8-1)d]=64
⇒2a+7d=16 ......(i)
and
19/2[2a+(19-1)d]=361
⇒2a+18d=38
⇒(2a+7d)+11d=38
⇒16+11d=38 [from eq. (i)]
⇒11d=22
⇒d=2
∴d=2
putting d=2 in eq. (i) we get,
2a+14=16
⇒2a=2
⇒a=1
∴a=1
the common difference (d) is 2
and the sum of n terms
=n/2[2a+(n-1)d]
=n/2[2+2n-2]
=n/2*2n
=n²
Answer:
• Sum of n terms in AP :
Sn = (n/2)[2a + (n- 1)d]
───────────────
⇒ S₈ = 64
⇒ 8/2 × (2a + 7d) = 64
⇒ 4 × (2a + 7d) = 64
⇒ 2a + 7d = 16 — eq. ( I )
⇒ S₁₉ = 361
⇒ 19/2 × (2a + 18d) = 361
⇒ 19 × (a + 9d) = 361
⇒ a + 9d = 19 — eq. ( II )
• Multiplying eq.( II ) by 2 & Subtracting from eq.( I ) from eq.( II ) :
↠ 2a + 18d - 2a - 7d = 38 - 16
↠ 11d = 22
↠ d = 2
• Substitute d value in eq. ( II ) :
⇒ a + 18 = 19
⇒ a = 19 - 18
⇒ a = 1
━━━━━━━━━━━━━━━━━━━━━━━━
⋆ Sum of nth terms of the AP :
↠ Sn = n/2 [2a + (n - 1)d]
↠ Sn = n/2 × [2 × 1 + (n - 1) × 2]
↠ Sn = n/2 × [2 + 2n - 2]
↠ Sn = n/2 × 2n
↠ Sn = n × n
↠ Sn = n²
∴ Sum of nth terms of the AP is n².