Math, asked by shivamsingh32802, 6 months ago

ارا
If the sum of the first 8term of AP 136and last of first 15 terms
is 465 then find the sum of first 25 terms​

Answers

Answered by Anonymous
12

Answer:

The sum of first 25 terms is 1321.

Formula used:

\sf{t_{n} = a + (n - 1)d}

Step-by-step explanation:

Given that,

  • \sf{t_8} = 136
  • \sf{t_{15}} = 465

Case (I),

\red\bigstar \sf{t_8} = 136

\sf{t_n} = a + (n - 1)d

\sf{t_8} = a + (8 - 1)d

▶ 136 = a + 7d _________________eqn. (1)

Case (II),

\green\bigstar\sf{t_{15}} = 465

\sf{t_n} = a + (n - 1)d

\sf{t_15} = a + (15 - 1)d

▶ 465 = a + 14d________________eqn. (2)

From eqn (1) & (2),

 \sf{\cancel{a }+ 7d = 136} \\ </p><p></p><p>\sf{ \cancel{a} + 14d = 465 } \\  -  -  -  -  -  -  \\ \:  \:  \:  \:  \:  \:  \:  \:  \sf {7d = 329}\\   \\  \longrightarrow{\pink{\sf{d = 47}}}

Put d = 47 in eqn. (1) , We get :

▶ a + 7(47) = 136

▶ a + 329 = 136

▶ a = 329 - 136

▶ a = 193

\longrightarrow{\sf{\blue{ a = 193}}}

Case (III),

\sf{t_{25} = ? }

\sf{t_{n}} = a + (n - 1)d

\sf{t_{25}} = 193 + (25-1) × 47

\sf{t_{25}} = 193 + 24 × 47

\sf{t_{25}} = 193 + 1128

\blue\bigstar {\red{\sf{t_{25} = 1321}}}

Similar questions