If the sum of the first n terms of an AP is given by Sn=4n sq- 3n , find the nth term of the AP.
Answers
Answered by
1
Answer :
The sum of the 1st n terms of the AP = 4n² - 3n
⇒ Sn = 4n² - 3n
Now, the sum upto (n - 1) terms,
S(n - 1) = 4(n - 1)² - 3(n - 1)
= 4(n² - 2n + 1) - 3(n - 1)
= 4n² - 8n + 4 - 3n + 3
= 4n² - 11n + 7
Thus, the nth term of the AP
= Sn - S(n - 1)
= (4n² - 3n) - (4n² - 11n + 7)
= 4n² - 3n - 4n² + 11n - 7
= 8n - 7
#MarkAsBrainliest
The sum of the 1st n terms of the AP = 4n² - 3n
⇒ Sn = 4n² - 3n
Now, the sum upto (n - 1) terms,
S(n - 1) = 4(n - 1)² - 3(n - 1)
= 4(n² - 2n + 1) - 3(n - 1)
= 4n² - 8n + 4 - 3n + 3
= 4n² - 11n + 7
Thus, the nth term of the AP
= Sn - S(n - 1)
= (4n² - 3n) - (4n² - 11n + 7)
= 4n² - 3n - 4n² + 11n - 7
= 8n - 7
#MarkAsBrainliest
Similar questions