Math, asked by EishanKhandait, 8 months ago

If the sum of the first n terms of an AP is n^2+3n, then find the 20th term of the series.​

Answers

Answered by Anonymous
8

Answer:

\sf{The \ 20^{th} \ term \ is \ 42 \ in \ series.}

Given:

\sf{Sum \ of \ n \ terms \ of \ an \ AP \ is}

\sf{n^{2}+3n}

To find:

\sf{The \ 20^{th} \ term \ of \ the \ series.}

Solution:

\sf{Method \ (I)}

\sf{S_{n}=n^{2}+3n}

\sf{\therefore{S_{1}=1^{2}+3(1)}}

\sf{\therefore{S_{1}=4}}

\sf{But, \ S_{1}=t_{1}}

\sf{\therefore{t_{1}=a=4}}

\sf{S_{2}=2^{2}+3(2)}

\sf{\therefore{S_{2}=4+6}}

\sf{\therefore{S_{2}=10}}

\sf{But, \ t_{1}+t_{2}=S_{2}}

\sf{\therefore{4+t_{2}=10}}

\sf{\therefore{t_{2}=10-4}}

\sf{\therefore{t_{2}=6}}

\sf{d=t_{2}-t_{1}}

\sf{\therefore{d=6-4}}

\sf{\therefore{d=2}}

\sf{Here,}

\sf{First \ term(a)=4,}

\sf{Common \ difference (d)=2}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\therefore{t_{20}=4+(20-1)\times2}}

\sf{\therefore{t_{20}=4+38}}

\sf{\therefore{t_{2}=42}}

___________________________________

\sf{Method (II)}

\sf{\underline{Concept:}}

\sf{Difference \ between \ S_{n+1} \ and \ S_{n}}

\sf{will \ be \ of \ t_{n+1}.}

\boxed{\sf{t_{n+1}=S_{n+1}-S_{n}}}

\sf{\therefore{t_{20}=S_{20}-S_{19}}}

\sf{But, \ S_{n}=n^{2}+3n}

\sf{\therefore{t_{20}=[20^{2}+3(20)]-[19^{2}+3(20)]}}

\sf{\therefore{t_{20}=[400+60]-[361+57]}}

\sf{\therefore{t_{20}=460-418}}

\sf{\therefore{t_{20}=42}}

\sf\purple{\tt{\therefore{The \ 20^{th} \ term \ is \ 42 \ in \ series.}}}

Answered by Anonymous
0

Given ,

The sum of first n terms of an AP is

  • (n)² + 3n

We know that ,

  \boxed{ \tt{a_{n} = S_{n}  - S_{n - 1} }}

Thus , the 20th term of AP will be

 \sf \implies a_{20} = S_{20}  - S_{19}

 \sf \implies a_{20} =  {(20)}^{2}   + 3(20) -  \{ {(19)}^{2}  + 3(19) \}

\sf \implies a_{20} = 400 + 60 - 361 - 57

\sf \implies a_{20} = 460 - 418

\sf \implies a_{20} = 42

Hence , the 20th term of given AP is 42

Similar questions