Math, asked by Anonymous, 3 months ago

If the sum of the first p terms in the arithmetic series is equal to the sum of the first and the terms, then their first
(p + q) Show that the sum of the terms is zero. (p is not equal q)​


Anonymous: I want With explanation...

Answers

Answered by SuitableBoy
60

{\large{\underbrace{\underline{\bf{Correct\:Question}}}}}

Q)) If the sum of the first p terms in an Arithmetic Series is equal to the sum of the first q terms, then show that the sum of its first (p+q) terms is zero.(p ≠ q).

 \\

{\large{\underbrace{\underline{\bf{Answer\checkmark}}}}}

  \\

{\underline{\underline{\frak{\green\dag\:Given:}}}}

 \\

  • Given series is Arithmetic Series/Progression.
  • Sum of first p terms = Sum of first q terms , \sf S_p=S_q

 \\

{\underline{\underline{\frak{\green\dag\:To \:Prove:}}}}

 \\

  • Sum of it's first (p+q) terms = 0 , \sf S_{\:(p+q) } =0

 \\

{\underline{\underline{\frak{\green\dag\:Required\:Solution:}}}}

 \\

Let ,

  • The first term of this A.P. = a

and,

  • Common difference = d

We know,

 \boxed{ \sf \: sum \: of \: first \: n \: terms  \: (s _{ \: n} )=  \frac{n}{2}  \{2a + (n - 1)d \}}

Now ,

{\textit{\textbf{According~to~the~Question}}}

 \rightarrow \sf \: sum \: of \: first \: p \: terms = sum \: of \: first \: q \: terms \\  \\  \rightarrow \sf \:  s _{ \: p} = s _{ \: q} \\  \\  \rightarrow \:   \sf\frac{p}{ \cancel2}  \{2a + (p - 1)d \} =  \frac{q}{ \cancel2}  \{2a + (q - 1)d \} \\  \\  \rightarrow \sf \: p(2a + pd - d) = q(2a + qd - d) \\  \\  \rightarrow \sf \: 2ap +  {p}^{2} d - pd = 2aq +  {q}^{2} d - qd \\  \\  \rightarrow  \sf\: 2ap - 2aq +  {p}^{2} d -  {q}^{2} d - pd + qd = 0 \\  \\  \sf \rightarrow \: 2a(p - q)  + d( {p}^{2}  -  {q}^{2} ) - d(p - q) = 0 \\  \\  \rightarrow \sf \: 2a(p - q) + d(p - q)(p + q) - d(p - q) = 0 \\  \\  \sf \rightarrow  \: (p - q) \{2a + d(p + q) - d \} = 0  \\  \\ \rm \: so

  \rm \: either \: \\  \\ \mapsto \rm \: (p - q) =  0 \\  \\ \mapsto  \rm\: p = q \:  \:  \\  \\  \rm \: but \: in \: question \: its \: given \: p \ne0

 \rm \: or \:  \\  \\  \mapsto  \rm \: \{2a + d(p + q) - d \} = 0 \\  \\  \mapsto \rm \:  \{ \: 2a + d(p + q - 1) \} = 0 \:   \blue{....(i)}

Now ,

 \sf \colon \implies \: sum \: of \: first \: (p + q )\: terms = s _{ \: (p + q)} \\  \\  \colon \sf \implies \: s _{ \: (p + q)}  = \frac{(p + q)}{2}   \purple{\underline{ \{2a + (p + q - 1) d \}}} \\  \\  \tt \: from \: eq(i) \\  \\  \sf \colon \implies \: s _{ \: (p + q)} =  \frac{(p + q)}{2}  \times \green0 \\  \\  \star\longrightarrow \:  \underline{ \boxed{ \tt \pink{s _{ \: (p + q)} =    \red{\bf{0}}}}} \:  \:  \therefore \:   \sf \: proved \: .

So,

The Sum of first (p+q) terms would be equal to zero (0) .

 \\

_____________________________


Diyarathva: wait i said how are you i am not said who are you
Diyarathva: ok
SuitableBoy: Aren't u misusing the "comment section" :'|
Diyarathva: ok
Diyarathva: sorry
SuitableBoy: It's Okay, i never mind ;)
Diyarathva: ok then abhi me message nhi karungi
SuitableBoy: ok
Diyarathva: ha
Diyarathva: by
Similar questions