Math, asked by sangeetasinghwa, 1 year ago

if the sum of the first P terms of an AP is the same as the sum of its first Q terms (where p is not equal to Q) then show that the sum of its first (P + Q) terms is zero.?

Answers

Answered by vedangISRO
2

Step-by-step explanation:

Next Gurukul

Learner's Section

WikiK-12 Wiki

AssessmentAssessments

ForumQ&A Forum

Educator's Section

MOOCMOOCs

Join Experts PanelJoin Experts Panel

Next WorldThe Next World

arrow_backAcademic Questions & Answers Forum

Sumit mahesh

Oct 11, 2013

If the sum of first p terms of an AP

If the sum of first p terms of an AP is equal to the sum of the first q terms then show that the sum of its first (p+q) term is 0 where p is not equal to q? Please give me answer as fast as you can...

question_answer Answers(2)

edit Answer

person

Agam Gupta

Member since Sep 21, 2013

Sum of first p terms of an AP is� Sum of first q terms of an AP is� Multiply both sides with (p + q)/2 Thus the sum of first (p + q) terms is zero

Answered by Anonymous
1

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \:  \: a \:  \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: given \: ap \: \\ then \\ s _{p} = s _{q}  \implies \frac{p}{2} (2a + (p - 1)d) =  \frac{q}{2} (2a + (q - 1)d \\  \implies(p - q)(2a)  = (q - p)(q + p - 1) \\  \implies2a = (1 - p - q)d \:  \:  \:  \:  \:  \:  \: .....(1) \\ sum \: of \: the \: first \: (p + q) \: terms \: of \: the \: given \: ap \\  =  \frac{(p  + q)}{2} (2a + (p + q - 1)d) \\  =  \frac{(p + q)}{2} .(1 - p - q)d + (p + q - 1)d \:  \:  \:  \:  \:  \:  \:  \: (using \: 1) \\   = 0

{\huge{\underline{\underline{\underline{\orange{\mathtt{❢◥ ▬▬▬▬▬▬ ⊙◆ ⊙▬▬▬▬▬▬ ◤❢}}}}}}}

Similar questions