if the sum of the first seven terms of an AP is 79 of it 17th terms 289
Answers
Answer:
Given that,
S7 = 49
S17 = 289
S7
= 7/2 [2a + (n - 1)d] S7 = 7/2 [2a + (7 - 1)d]
49 = 7/2 [2a + 16d] =
7 = (a + 3d)
a + 3d = 7 ... (i)
Similarly,
S17 = 17/2 [2a + (17 - 1)d]
289 = 17/2 (2a + 16d)
17 = (a + 8d) = a + 8d = 17.. (ii)
Subtracting equation (i) from equation (i),
5d = 10
d = 2
From equation (i),
a + 3(2) = 7
a + 6 = 7
a = 1
Sn = n/2 [2a + (n - 1)d]
= n/2 [2(1) + (n - 1) x 2]
= n/2 (2 + 2n - 2)
= n/2 (2n)
= n2
Step-by-step explanation:
See the attachment Also...
★ ʟᴇᴛ ᴛʜᴇ ғɪʀsᴛ ᴛᴇʀᴍ ᴀɴᴅ ᴛʜᴇ ᴄᴏᴍᴍᴏɴ ᴅɪғғᴇʀᴇɴᴄᴇ ᴏғ ᴛʜᴇ ɢɪᴠᴇɴ ᴀ.ᴘ ʙᴇ a ᴀɴᴅ d, ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ.
❥︎ Sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ 7 ᴛᴇʀᴍs,
✰ᴡᴇ ᴋɴᴏᴡ,
❥︎ sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ 17 ᴛᴇʀᴍs ,
★ sᴜʙᴛʀᴀᴄᴛɪɴɢ (ii) ғʀᴏᴍ (i) , ᴡᴇ ɢᴇᴛ
5d =10
★ sᴜʙsᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ d ɪɴ (i) ᴡᴇ ɢᴇᴛ
✰ɴᴏᴡ ,
sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ n ᴛᴇʀᴍs ɪs ɢɪᴠᴇɴ ʙʏ
❥︎ᴛʜᴇʀᴇғᴏʀᴇ , ᴛʜᴇ sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ n ᴛᴇʀᴍs ᴏғ ᴛʜᴇ ᴀᴘ ɪs