Math, asked by narayanbc2003, 5 months ago

if the sum of the first seven terms of an AP is 79 of it 17th terms 289​

Answers

Answered by Anonymous
0

Answer:

Given that,

S7 = 49

S17 = 289

S7

= 7/2 [2a + (n - 1)d] S7 = 7/2 [2a + (7 - 1)d]

49 = 7/2 [2a + 16d] =

7 = (a + 3d)

a + 3d = 7 ... (i)

Similarly,

S17 = 17/2 [2a + (17 - 1)d]

289 = 17/2 (2a + 16d)

17 = (a + 8d) = a + 8d = 17.. (ii)

Subtracting equation (i) from equation (i),

5d = 10

d = 2

From equation (i),

a + 3(2) = 7

a + 6 = 7

a = 1

Sn = n/2 [2a + (n - 1)d]

= n/2 [2(1) + (n - 1) x 2]

= n/2 (2 + 2n - 2)

= n/2 (2n)

= n2

Step-by-step explanation:

See the attachment Also...

Attachments:
Answered by Anonymous
99

\huge\purple{\mathfrak{Answer:-}}

★ ʟᴇᴛ ᴛʜᴇ ғɪʀsᴛ ᴛᴇʀᴍ ᴀɴᴅ ᴛʜᴇ ᴄᴏᴍᴍᴏɴ ᴅɪғғᴇʀᴇɴᴄᴇ ᴏғ ᴛʜᴇ ɢɪᴠᴇɴ ᴀ.ᴘ ʙᴇ a ᴀɴᴅ d, ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ.

❥︎ Sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ 7 ᴛᴇʀᴍs,

\boxed{ S _{7} = 49} .

✰ᴡᴇ ᴋɴᴏᴡ,

\boxed{  s  =  \frac{n}{2}   [ 2a +( n-1 )d ] }

 →  \frac{7}{2}  \: (2a + 6d \:  = 49

→  \frac{7}{2}   \: \times 2(a + 3d) = 49

  \boxed{→ a +  \: 3d = 7 } ........(i)

❥︎ sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ 17 ᴛᴇʀᴍs ,

 \boxed{ S_{17} \:  = 289}

→ \frac{17}{2}  \: (2a + 16d) = 289

→ \frac{17}{2}  \times 2(a + 8d) = 289

→ \:  a + 8d = \:  \frac{289}{17}  = 17

→ \boxed{ a + 8d = 17 } .........(ii)

sᴜʙᴛʀᴀᴄᴛɪɴɢ (ii) ғʀᴏᴍ (i) , ᴡᴇ ɢᴇᴛ

5d =10

 →   \boxed{ d   = 2 } 

sᴜʙsᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ d ɪɴ (i) ᴡᴇ ɢᴇᴛ

  →  \boxed{ a = 1 }

✰ɴᴏᴡ ,

sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ n ᴛᴇʀᴍs ɪs ɢɪᴠᴇɴ ʙʏ

\boxed{  s  =  \frac{n}{2}   [ 2a +( n-1 )d ] }

→ \frac{n}{2} [ 2 ×1 +2  ( n-1 ) ]

==> \boxed{ n( 1 + n - 1 =  {n}^{2}  } .

❥︎ᴛʜᴇʀᴇғᴏʀᴇ , ᴛʜᴇ sᴜᴍ ᴏғ ᴛʜᴇ ғɪʀsᴛ n ᴛᴇʀᴍs ᴏғ ᴛʜᴇ ᴀᴘ ɪs

 {n}^{2}

❥︎ ɦσρε เƭ ɦεℓρร !

Similar questions