Math, asked by kanakavalli2016, 8 months ago

if the sum of the lengths of the diagonals of a square is 144m then its area is​

Answers

Answered by Anonymous
2

\huge\star\boxed{\mathfrak\pink{\underline{\underline{Answer}}}}\star\\\\\\

\textbf{$Area=2,591.217216\:m^2$}\\\\\\

\huge\star\star\boxed{\mathbb\red{\underline{\underline{GIVEN}}}}\star\star\\\\\\

\odot\:\:\textbf{Sum\:of\:Diagonals=144m}\\\\

\huge\star\star\star\boxed{\mathbb\green{\underline{\underline{TO\: CALCULATE}}}}\star\star\star\\\\\\

\odot\:\:\textbf{Area\:of\: square}\\\\\\

\huge\star\star\star\star\boxed{\mathcal\red{\underline{\underline{Explanation}}}}\star\star\star\star\\\\\\

\textsf{Let the side of a square be a. }\\\\\\

\boxed{\textsf{Diagonal of a square= $\sqrt{2}a$}}\\\\

\textsf{where a is the side of the square }\\\\\\

\huge\texttt{ATQ,}\\\\

\textsf{$2\times\sqrt{2}a=144\:m$}\\\\

\Longrightarrow\textsf{$\sqrt{2}a=72\:m$}\\\\

\Longrightarrow\textsf{$a=\dfrac{72}{\sqrt{2}}\:m$}\\\\\\

\textsf{We cannot substitute the value of $\sqrt{2}$ because}\\

\textsf{we do not know the accurate value of $\sqrt{2}$}\\

\textsf{So we rationalise the denominator by multiplying}\\

\textsf{with $\sqrt{2}$ with numerator and denominator}\\\\

\textsf{a=$\dfrac{72}{\sqrt{2}}\times\dfrac{\sqrt{2}}{\sqrt{2}}\:m$}\\\\

\textsf{$a=\dfrac{72\:\times\:\sqrt{2}}{2}\:m$}\\\\

\textsf{$a=36\sqrt{2}\:m$}\\\\

\textsf{Substituting the value of $\sqrt{2}$ as 1.414}\\\\\\

\Longrightarrow\textsf{$a=36\times1.414 m $}\\\\

\Longrightarrow\textsf{$a=50.904 m $}\\\\\\

\huge\boxed{\texttt{Area\:of\: Square}}\\\\\\

\boxed{\textbf{$Area\:of\: square\:=\:side^2\:or\:a^2$}}\\\\

\textsf{$Area=50.904^2\:m^2$}\\\\

\textsf{$Area=2591.217216\:m^2$}\\\\\\

\therefore\textbf{The\:Answer\:is\:$2591.216216\:{m}^{2}$}\\\\\\

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

Similar questions