Math, asked by Aj777738, 1 year ago

If the sum of the root of the quadratic equations is 1/x+p+1/x+q=1/r is 0 show that the product of root is -p^p+q^q/2

Answers

Answered by Anonymous
81

Answer:

\frac{1}{x + p} + \frac{1}{x + q} = \frac{1}{r} \\  \\ \frac{x + q + x + p}{(x + p)(x + q} = \frac{1}{r} \\   \\ \frac{2x + p + q}{ {x }^{2} + qx + px + pq} = \frac{1}{r} \\  \\ r(2x + p + q) = {x}^{2} + qx + px + pq \\   \\ 2rx + pr + qr = {x}^{2} + qx + px + pq \\   \\ 0 = {x}^{2} + qx + px + pq - 2rx + - pr - qr \\  \\ {x}^{2} + qx + px - 2rx + pq - pr - qr = 0 \\   \\ {x}^{2} + x(q + p - 2r) + pq - pr - qr = 0 \\  \\ {x}^{2} + (p + q - 2r)x + (pq - pr - qr) = 0........(1) \\   \\ Comparing \: with \: ax ^{2} + bx + c = 0 \: we \: get \\   \\ a = 1 \\ b = p + q - 2r \\ c = pq - pr - qr \\  \\ let \: \alpha \: and \: \beta \: be \: the \: roots \: of \: equation \: 1 \\  \\ let \\ \alpha + \beta = \frac{ - b}{a} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{ -(p + q - 2r)}{1} \\ \\ \alpha + \beta = - p - q + 2r \\  \\ but \: \alpha + \beta = 0.......(given) \\  \\ - p + q - 2r = 0 \\ \\ 2r = p + q \\  \\ \\ r = \frac{p + q}{2} \\ \\ also \: \alpha \beta = \frac{c}{a} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{pq - pr - qr}{1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = pq - pr - qr \\ \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = pq - r(p + q)

 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = pq - ( \frac{p + q}{2})(p + q).........r = \frac{p + q}{2} \\ \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = pq - \frac{ {(p + q)}^{2} }{2} \\  \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{2pq - (p + q )^{2} }{2} \\ \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{2pq - (p ^{2} + 2pq + {q}^{2}) }{2} \\ \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{2pq - {p}^{2} - 2pq - {q}^{2} }{2} \\ \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{ - {p}^{2} - {q}^{2} }{2} \\  \\ \\ \alpha \beta = - ( \frac{ {p}^{2} + {q}^{2} }{2} )


Anonymous: who are you?
Anonymous: plz don't comment unnecessarily sir :)
BrAiNlY1PrInCe: OK :)
Anonymous: :)
BrAiNlY1PrInCe: can I ask u a question
Anonymous: yeah of course
BrAiNlY1PrInCe: where r u from
BrAiNlY1PrInCe: hello
Anonymous: no unnecessary comments... question should be related to study... hope u will understand my word if not then too plz just understand these words 'don't comment unnecessarily ' :)
BrAiNlY1PrInCe: OK
Answered by mamtapalakurti82628
6

Please mark as brainlist answer!!!!!

Hope it helps U a lot friends!!!!

Similar questions