Math, asked by prakashboranche, 1 year ago

If the sum of the roots of quadratic equation axsquare+bx+c=0 is equal to the sum of cubes of their reciprocals then prove that absquare=3asquarec+c cube

Answers

Answered by mathsdude85
2

\boxed{\underline{\textsf{Solution :}}}

\textsf{The given quadratic equation is}

\bold{ax^{2}+bx+c=0}\:\textsf{---(i)}

\textsf{If p and q be the roots of (i)}

\bold{p+q=-\frac{b}{a}}

\&\:\bold{pq=\frac{c}{a}}

\textsf{Now, given that}

\bold{p+q=\frac{1}{p^{3}}+\frac{1}{q^{3}}}

\to \bold{p+q=\frac{p^{3}+q^{3}}{p^{3}q^{3}}}

\to \bold{p+q=\frac{(p+q)^{3}-3pq(p+q)}{(pq)^{3}}}

\to \bold{1 = \frac{(p+q)^{2}-3pq}{(pq)^{3}}}

\textsf{since,}\:\bold{p+q \neq 0}

\to \bold{(pq)^{3}=(p+q)^{2}-3pq}

\to \bold{(\frac{c}{a})^{3}=(-\frac{b}{a})^{2}-3\frac{c}{a}}

\to \bold{\frac{c^{3}}{a^{3}} = \frac{b^{2}}{a^{2}}-\frac{3c}{a}}

\to \bold{c^{3} = ab^{2}-3a^{2}c}

\implies \boxed{\bold{ab^{2}=3a^{2}c+c^{3}}}

\textsf{which is the required relation.}

Similar questions