Math, asked by aldbha123, 1 year ago

if the sum of the roots of the quadratic equation
a {x}^{2}  +  \: bx \:  +  \: c  =  \: 0
is equal to the sum of the cubes of the reciprocals, then prove that
a {b}^{2}  =  3 {a}^{2}c \:  +  \:  {c}^{3}

Answers

Answered by muthyalasravani1729
1

Step-by-step explanation:

let roots of the equation be p and q

given condition sum of roots is equal to the sum of the cubes of the reciprocals

 p + q = (1 \div  {p}^{3} ) + (1 \div  {q}^{3} )

then

(p + q) = ( {p}^{3}  +  {q}^{3} ) \div  {(pq)}^{3}  \\ (p + q) = (p + q)(  {p}^{2}  +  {q}^{2}  - pq)  \div  {(pq)}^{3}  \\ 1 = ( {p}^{2}  +  {q}^{2}   - pq)  \div {(pq)}^{3}   \\  {(pq)}^{3}  =  {p}^{2}  +  {q}^{2}  - pq \\  {(pq)}^{3}    + pq =  {p}^{2}  +  {q}^{2}  \\ (pq)^{3}  + pq=  {(p + q)}^{2}  - 2pq \\ {(pq)}^{3} + 3pq =  {(p + q)}^{2}

here pq=(c/a) and p+q=(-b/a)

substitute the values in above equation

 {(c \div a)}^{3}  + (c \div a) =  {( - a \div b)}^{2}  \\ ( {c}^{3} \div  {a}^{3} )  + (c \div a)  =  {a}^{2}   \div  {b}^{2}  \\(  {c}^{3} +   {a}^{2}) \div  {a}^{3} =  {a}^{2}    \div {b}^{2}   \\  {b}^{2}( {c}^{3}  +  {a}^{2} ) =  {a}^{2}  ( {a}^{3} ) \\  {b}^{2} ( {c}^{3} +  {a}^{2}  ) =  {a}^{5}

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove \: that :  \\ ab {}^{2}  = 3a {}^{2} c + c {}^{3}  \\  \\ given \: quadratic \: equation \: is \\ ax {}^{2}  + bx + c = 0 \\ let \: its \: roots \: be \:  \alpha  \: and \:  \beta  \\  \\ so \: w e\: know \: that \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \\ moreover \:we \: have \\  \alpha  {}^{3}  +  \beta  {}^{3}  = ( \alpha  +  \beta ) {}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) \\  \\  = ( \frac{ -b \:  }{a} ) {}^{3}  - 3( -  \frac{b}{a}  \: )( \frac{c}{a}  \: ) \\  \\  =  \frac{ - b {}^{3} }{a {}^{3} }  +  \frac{3bc}{a {}^{2} }  \\  \\  =  \frac{3abc -b {}^{3}  }{a {}^{3} }

according \: to \: given \: condition \\  \alpha  +  \beta  =  \frac{1}{ \alpha  {}^{3} }  +  \frac{1}{ \beta  {}^{3} }  \\  \\  \alpha  +  \beta  =  \frac{ \alpha  {}^{3}  +  \beta  {}^{3} }{ \alpha  {}^{3}. \beta  {}^{3}  }  \\  \\(  \alpha  +  \beta )( \alpha  \beta ) {}^{3}  =  \alpha  {}^{3}  +  \beta  {}^{3}  \\  \\  (-  \frac{b}{a}  \: )( \frac{c}{a} ) {}^{3}  =  \frac{3abc - b {}^{3} }{a {}^{3} }  \\  \\  \frac{ - bc {}^{3} }{a {}^{4} }  =  \frac{3abc - b {}^{3} }{a {}^{3} }  \\  \\  -  \frac{bc {}^{3} }{a}  = 3abc - b {}^{3}  \\  \\ -  bc {}^{3}  = b(3a {}^{2} c - b {}^{2} ) \\  \\  - c {}^{3}  = 3a {}^{2} c - b {}^{2}  \\  \\ b {}^{2}  = 3a {}^{2} c + c {}^{3}

Similar questions