Math, asked by avanjas, 1 year ago

If the sum of the squares of the zeroes of the quadratic polynomial f(x)=x^2-px+70 is equal to 149, then the value of p is

Answers

Answered by AJAYMAHICH
16
Let α,β are the roots of the quadratic polynomial f(x) = x2+px+45 then 

 α + β = -p ---------(1) and  αβ = 45

Given  (α - β)2 = 144 

∴ (α + β)2 – 4αβ = 144

⇒ (– p)2 – 4 × 45 = 144               [Using (1)]

⇒ p 2 – 180 = 144

⇒ p 2 = 144 + 180 = 324



Thus, the value of p is ± 18.
Answered by DelcieRiveria
51

Answer:

The value of p is either 17 or -17.

Step-by-step explanation:

It α and β are two zeroes of a polynomial, then the polynomial is defined as

g(x)=x^2+(\alpha +\beta)x+\alpha \beta           .... (1)

The given polynomial is

f(x)=x^2-px+70                ..... (2)

On comparing (1) and (2), we get

\alpha +\beta=-p

\alpha\beta=70

(\alpha +\beta)^2=\alpha^2+2\alpha \beta +\beta^2

(-p)^2=(\alpha^2+\beta^2)+2\alpha \beta

(-p)^2=(149)+2(70)

p^2=289

p=\pm\sqrt{289}

p=\pm 17

Therefore the value of p is either 17 or -17.

Similar questions