Math, asked by Sammyj25, 1 year ago

If the sum of the squares of zeroes of the quadratic polynomial ,
f(x) =  {x}^{2}  - 8x + k \:
is 40. Find the value of k.

Answers

Answered by BEJOICE
1

let \: the \: zeroes \: be \:  \alpha  \:  \: and \:  \:  \beta  \\ from \: the \: equation \\  \alpha  +  \beta  = 8 \:  \:  \:  \:  \alpha  \beta  = k \\ given \:  \:  { \alpha }^{2}  +  { \beta }^{2}  = 40 \\  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  = 40 \\  {8}^{2}  - 2k = 40 \\ k = 12
Similar questions