Math, asked by syednishat466, 11 months ago

if the sum of the zeros is - 1, and their product is 7, then find the quadratic polynomial​

Answers

Answered by Anonymous
112

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\large{\underline{\underline{\mathfrak{\pink{\sf{Give\:Here:-}}}}}}.

✴Sum of Zeros. = -1.

✴Product of Zeros = 7.

\large{\underline{\underline{\mathfrak{\green{\sf{Find\:Here:-}}}}}}.

\red{\:Quadratic\:Equation}.

\large{\underline{\underline{\mathfrak{\green{\sf{Explanations:-}}}}}}.

➡We know that .

\green{\:Formula\:of\:Quadratic\:Equation}.

\red{\:X^2-X(\:Sum\:of\:zeros)\:+\:(\:product\:of\:zeros)\:=\:0}.

\implies\:X^2-X(-1)+(7)\:=\:0.

\implies\:X^2+X+7\:=\:0.

______________________

Answered by Anonymous
8

 \mathtt{ \huge{ \fbox{SOLUTION : }}}

Given ,

Sum of zeroes = - 1

Product of zeroes = 7

We know that , the quadratic equation is given by

 \sf \large \fbox{ {(x)}^{2}  - (sum \: of \: roots)x + (product \: of \: roots) = 0}

Substitute the values , we obtain

 \sf \hookrightarrow {(x)}^{2}  - ( - 1)x + 7 = 0 \\  \\ \sf \hookrightarrow   {(x)}^{2}   + 1x + 7 = 0

Hence , (x)² + x + 7 is the required polynomial

Similar questions