If the sum of the zeros of a quadratic polynomial p(x)=2x^2−(k+5)x+2(3k−1) is equal to half of the product of its zeros, find the value of k.
Answers
Answered by
5
Answer:
k = 5
Step-by-step explanation:
Let α and β are the roots of given quadratic equation x² - ( k +6)x + 2(2k +1) = 0 [ you did mistake in typing of equation , I just correct it ]
Now, sum of roots = α + β = - {-( k + 6)}/1 = (k + 6)
product of roots = αβ = 2(2k + 1)/1= 2(2k + 1)
A/C to question,
sum of roots ( zeros ) = 1/2 × products of roots zeros
⇒ (k + 6) = 1/2 × 2(2k + 1)
⇒ (k + 6) = (2k + 1)
⇒ k + 6 = 2k + 1
⇒ k = 5
Hence, k = 5
THANK YOU!!!
I HOPE THIS ANSWER IS HELPFUL TO YOU...
HAVE A NICE DAY!!!
A kind request:
If you find this answer helpful, please mark me as brainliest and rate my answer so that i can move forward and answer your doubts...
Thank you!!!
Similar questions