Math, asked by mukundbluerajpal, 4 months ago

If the sum of the zeros of the polynomial 3xsquare - (3k -- 2)x - (k - 6) is
equal to the product of the roots, then find the value of k.​

Answers

Answered by snehitha2
44

Answer:

k = 2

Step-by-step explanation:

Given :

The sum of the zeros of the polynomial 3x² - (3k – 2)x - (k - 6) is equal to the product of the roots.

To find :

the value of k

Solution :

For a quadratic equation of the form ax² + bx + c = 0 ;

⟿ sum of roots = –(x coefficient)/x² coefficient = –b/a

⟿ product of roots = constant/x² coefficient = c/a

For the given quadratic equation,

x² coefficient, a = 3

x coefficient, b = –(3k – 2)

constant, c = –(k – 6)

Sum of zeroes = Product of zeroes

–b/a = c/a

–b = c

–[–(3k – 2)] = –(k – 6)

3k – 2 = –(k – 6)

3k – 2 = –k + 6

3k + k = 6 + 2

4k = 8

k = 8/4

k = 2

The value of k is 2

Answered by diajain01
67

{\boxed{\underline{\tt{\orange{Required  \:  \: answer:-}}}}}

k = 2

★GIVEN:-

  • \displaystyle\sf{3x^2 - (3k -- 2)x - (k - 6)}

★TO FIND:-

  •  \displaystyle \sf{Value \:  \:  of \:  \:  K }

★FORMULA USED:-

  • \displaystyle\sf{Sum\: \:  of \:\:roots \:=\:  \frac{ - b}{a}}

  • \displaystyle\sf{product\: \:  of \:\:roots \:=\:  \frac{ c}{a}}

★SOLUTION:-

:  \longrightarrow\displaystyle\sf{3x^2 - (3k -- 2)x - (k - 6) = 0}

  • a = 3

  • b = -(3k-2)

  • c = -(k-6)

\displaystyle\sf{Sum\: \:  of \:\:roots \:=\:  \frac{ - b}{a} =  \frac{ - ( - (3k - 2))}{3} } \\  \\ \displaystyle\sf{product\: \:  of \:\:roots \:=\:  \frac{ c}{a} =  \frac{ -(k - 6)}{3} }  \\   \sf{For \:  the \:  given \:  problem:- }Sum \:  \:  of  \:  \: roots = Product \:  \:  of  \:  \: roots  \\  \\ : \longrightarrow \displaystyle \sf{ \frac{(3k - 2)}{3} =  \frac{ - (k - 6)}{3}  } \\ :\longrightarrow \displaystyle \sf{ 3k - 2 =  - k + 6  } \\  : \longrightarrow \displaystyle \sf{ 3k  + k =  2 +  6  } \\  : \longrightarrow \displaystyle \sf{ 4k = 8  } \\  \\ { \boxed{ \huge{ \underline{ \underline{ \sf{ \gray{ \rm{k = 2}}}}}}}}

Similar questions