If the sum of three numbers in G.P is 38, and their product is 1728, find the numbers.
Answers
Answered by
5
let the numbers be a, ar, ar²
sum is ⇒ a+ar+ar² = 38 ----------- (i)
product is⇒ a*ar*ar² = 1728 ---------- (ii)
⇒ a³r³ = 1728
⇒ (ar)³ = (12)³
⇒ ar = 12 ⇒ a = 12/r --------- (iii)
frm (i)
12/r + 12 + 12r²/r = 38
12r² - 26r + 12 = 0
taking 2 common
6r² - 13r + 6 = 0
6r² -4r - 9r + 6 =0
∴ r = 2/3, r = 3/2
putting, r= 3/2 in (iii)
we get a = 8
hence, the numbers are
8,12,18
sum is ⇒ a+ar+ar² = 38 ----------- (i)
product is⇒ a*ar*ar² = 1728 ---------- (ii)
⇒ a³r³ = 1728
⇒ (ar)³ = (12)³
⇒ ar = 12 ⇒ a = 12/r --------- (iii)
frm (i)
12/r + 12 + 12r²/r = 38
12r² - 26r + 12 = 0
taking 2 common
6r² - 13r + 6 = 0
6r² -4r - 9r + 6 =0
∴ r = 2/3, r = 3/2
putting, r= 3/2 in (iii)
we get a = 8
hence, the numbers are
8,12,18
Answered by
1
Let the numbers be a/r , a and ar.
According to the question ,
a/r × a × ar = 1728.
a³ = 1728
a³ = (12)³³
a = 12 [1]
a/r + a + ar = 38
a[ 1/r +1+ r ] = 38
12[ 1 + r + r² ] / r = 38 { using 1 }
12 + 12r + 12r² = 38r
12 + 12r² = 38r - 12r = 26r
12 - 26r + 12r² = 0
12r² - 26r +12 = 0
12r² - 18r - 8r + 12 = 0
6r( 2r - 3 ) - 4( 2r - 3 ) = 0
( 6r - 4 )( 2r - 3 ) = 0
r = 2/3 , 3/2
the numbers are
18 , 12 , 8
OR
8 , 12 , 18
According to the question ,
a/r × a × ar = 1728.
a³ = 1728
a³ = (12)³³
a = 12 [1]
a/r + a + ar = 38
a[ 1/r +1+ r ] = 38
12[ 1 + r + r² ] / r = 38 { using 1 }
12 + 12r + 12r² = 38r
12 + 12r² = 38r - 12r = 26r
12 - 26r + 12r² = 0
12r² - 26r +12 = 0
12r² - 18r - 8r + 12 = 0
6r( 2r - 3 ) - 4( 2r - 3 ) = 0
( 6r - 4 )( 2r - 3 ) = 0
r = 2/3 , 3/2
the numbers are
18 , 12 , 8
OR
8 , 12 , 18
Similar questions