Math, asked by Hereisthefuckingans, 4 months ago

If the sum of two natural numbers is 8 and their product is 15, find the

numbers qudraticaly ​

Answers

Answered by ramesh015
3

Answer:

Let the first natural number be x. Sum of two natural numbers is 8 then other natural numbers will be 8 – x. According to question. Product of both natural numbers = 15 ⇒ x (8 – x) = 15 ⇒ 8x – x2 = 15 ⇒ x2 – 8x + 15 = 0 ⇒ x2 – (5 + 3)x + 15 = 0 ⇒ x2 – 5x – 3x + 15 = 0 ⇒ (x2 – 5x) – (3x – 15) = 0 ⇒ x (x – 5) – 3 (x – 5) = 0 ⇒ (x – 5) (x – 3) = 0 ⇒ x – 5 = 0 or x – 3 = 0 ⇒ x = 5 or x = 3 Thus, if First natural no. = 5 then Second natural no. = 8 if First natural no. = 3 or Second natural no. = 8Read more on Sarthaks.com - https://www.sarthaks.com/750796/if-the-sum-of-two-natural-numbers-is-8-and-the-product-is-15-then-find-numbers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{sum \: of \: two \: natural \: numbers \: is \: 8} \\ &\sf{product \: of \: these \: numbers \: is \: 15} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{two \: natural \: numbers}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Let \:  -  \begin{cases} &\sf{ ✬ \: first \: natural \: number \: be \: x} \\ &\sf{ ✬ \: second \: natural \: number \: be \: y} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\sf\sf \:  ⟼ \:  x \:  +  \: y \:  =  \: 8

\sf \: \sf \:  ⟼ \: y \:  =  \: 8 \:  -  \: x \:  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\sf \:  ⟼ \: product \: of \: two \: natural \: numbers \: is \: 15

\bf\implies \:x \: y \:  =  \: 15

 ✬ On substituting the value of y from (1), we get

\sf \: \sf \:  ⟼ x \: ( \: 8 \:  -  \: x \: ) \:  =  \: 15

\sf \:  ⟼ \: 8 \: x \:  -  \:  {x}^{2}  \:  =  \: 15

\bf\implies \: {x}^{2}  \:  -  \: 8 \: x \:   +  \: 15 \:  =  \: 0

\sf \:  ⟼ \:  {x}^{2}  \:  -  \:  5x\:  -  \: 3x \:  + 15 \:  =  \: 0

\sf \:  ⟼ \: x \: ( \: x \:  -  \: 5 \: ) \: - 3  \: ( \:  x\: -   \: 5 \: ) \:  =  \: 0

\sf \:  ⟼ \: ( \: x \:   - \:  5\: ) \: ( \: x \:  -  \:  3\: ) \:  =  \: 0

\bf\implies \:x \:  =  \:  5\: or \:x  \:  =  \: 3

\sf \:  ⟼ \: So, \:  when  \: \bf \:  x \:  = \:  3 \: \bf\implies \: y  \: =  \: 5

\sf \:  ⟼ \: And,  \: when  \: \bf \:  x \:  = \:  5 \: \bf\implies \: y  \: =  \: 3

\bf \:  Hence,  \: two \:  natural  \: numbers  \: are \:  3 \:  and  \: 5.</p><p>

Similar questions