Math, asked by sanyograman, 11 months ago

if the sum of two number is 14 and multiplication is 40 then find their difference​

Answers

Answered by united05315cr
2

Answer: difference=6 or -6

Step-by-step explanation:

let one no. be a

let another no. be b

a.t.q.,

⇒ a+b=14 ---------------------------(i)

⇒ a*b=40 ---------------------------(ii)

⇒ b=14-a

putting value of b in eq. (ii), we get,

⇒a*(14-a)=40

⇒14a-a²=40

⇒a²-14a+40=0

⇒a²-10a-4a+40=0

⇒a(a-10)-4(a-10)=0

⇒(a-4)(a-10)=0

so, a=4,10

            a+b=14                                            |                      a+b=14

            b=14-4                                            |                       b=14-10

            b=10                                                |                       b=4

now we will take values of a and b one by one=

            a-b=10-4=6      or        a-b=4-10=-6

Answered by sujatashailesh34
9

Answer:

Step-by-step explanation:

Let the two numbers be x and y

Therefore x + y = 14

                     xy = 40

Let us square this equation

(x + y)^{2} = x^{2} + y^{2}  + 2xy

  14^{2} = x^{2} + y^{2} + 2(40)

  196 = x^{2} + y^{2} + 80\\196 - 80 = x^{2} + y^{2}\\116 = x^{2} + y^{2}

Therefore,

(x - y)^{2}  =  x^{2} + y^{2} - 2xy\\\(x - y)^{2}  = 116 - 2(40)\\(x - y)^{2}  = 116 - 80\\(x - y)^{2}  = 36\\        x - y  = \sqrt{36} \\        x - y  = 6

x - y = 6

Similar questions