Math, asked by priyanshikhetan9, 20 days ago

If the sum of two numbers a and b is 3 times their GM and given that a:b= p+√q:p-√q where p and q are prime number find p+q​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm \: a : b \:  =  \:( p +  \sqrt{q}) : (p -  \sqrt{q}) \\

where p and q are prime numbers.

Also, given that sum of two numbers a and b is 3 times their GM.

Let assume that a > b.

\rm \: a + b = 3 GM \\

\rm \: a + b =  3\sqrt{ab}  \\

can be further rewritten as

\rm \: a + b =  \dfrac{3}{2}  \times 2\sqrt{ab}  \\

can be further rewritten as

\rm \: \dfrac{a + b}{2 \sqrt{ab} }  = \dfrac{3}{2}  \\

Apply Componendo and Dividendo, we get

\rm \: \dfrac{a + b + 2 \sqrt{ab} }{a + b - 2 \sqrt{ab} }  = \dfrac{3 + 2}{3 - 2}  \\

can be further rewritten as

\rm \: \dfrac{ {( \sqrt{a} )}^{2}  +  {( \sqrt{b} )}^{2}  + 2 \sqrt{ab} }{ {( \sqrt{a} )}^{2}  +  {( \sqrt{b} )}^{2}  - 2 \sqrt{ab} }  = \dfrac{5}{1}  \\

can be further reduced as

\rm \: \dfrac{ {( \sqrt{a}  +  \sqrt{b} )}^{2} }{ {( \sqrt{a} -  \sqrt{b})}^{2} }  = 5 \\

\rm \: \dfrac{ \sqrt{a}  +  \sqrt{b} }{ \sqrt{a}  -  \sqrt{b} }  =  \sqrt{5}  \\

can be rewritten as

\rm \: \dfrac{ \sqrt{a}  +  \sqrt{b} }{ \sqrt{a}  -  \sqrt{b} }  =  \dfrac{ \sqrt{5} }{1}   \\

On applying Componendo and Dividendo, we get

\rm \: \dfrac{ \sqrt{a}  +  \sqrt{b}  +  \sqrt{a}  -  \sqrt{b} }{ \sqrt{a} + \sqrt{b}  -  \sqrt{a} +  \sqrt{b}  }  =  \dfrac{ \sqrt{5}  + 1}{ \sqrt{5}  - 1}   \\

\rm \: \dfrac{ 2\sqrt{a}}{2\sqrt{b}}  =  \dfrac{ \sqrt{5}  + 1}{ \sqrt{5}  - 1}   \\

\rm \: \dfrac{\sqrt{a}}{\sqrt{b}}  =  \dfrac{ \sqrt{5}  + 1}{ \sqrt{5}  - 1}   \\

On squaring both sides, we get

\rm \: \dfrac{a}{b}  = \dfrac{ {( \sqrt{5}  + 1)}^{2} }{ {( \sqrt{5}  - 1)}^{2} }  \\

\rm \: \dfrac{a}{b}  = \dfrac{5 + 1 + 2 \sqrt{5} }{5 + 1 - 2 \sqrt{5} }  \\

\rm \: \dfrac{a}{b}  = \dfrac{6 + 2 \sqrt{5} }{6 - 2 \sqrt{5} }  \\

\rm \: \dfrac{a}{b}  = \dfrac{2(3 +  \sqrt{5}) }{2(3 - \sqrt{5} )}  \\

\rm \: \dfrac{a}{b}  = \dfrac{3 +  \sqrt{5}}{3 - \sqrt{5}}  \\

\rm\implies \: a \: :  \:  b= (3 +  \sqrt{5}) \:  :  \: (3 -  \sqrt{5})

But given that

\rm \: a : b \:  =  \:( p +  \sqrt{q}) : (p -  \sqrt{q}) \\

So, on comparing we get

\rm \: p = 3 \\

and

\rm \: q = 5 \\

So,

\rm\implies \:\rm \: p + q = 3 + 5 = 8 \\

\rule{190pt}{2pt}

Formulae Used :-

1. If a and b are two positive real numbers, then Geometric mean between a and b is given by

\boxed{ \rm{ \: \: GM \:  \:  =  \:  \:  \sqrt{ab}  \:  \: }} \\

\boxed{ \rm{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \:  \: }} \\

\boxed{ \rm{ \: {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \:  \: }} \\

2. If a : b :: c : d, then Componendo and Dividendo means

\boxed{ \rm{ \: \:  \frac{a + b}{a - b} =  \frac{c + d}{c - d}  \:  \: }} \\

Similar questions