Math, asked by snehalarts6787, 8 hours ago

If the sum of two numbers is 20 and the sum of their squares is minimum then thenumbers are
(a) 10,10
(b) 5,15
(c) 4,16
(d) 3,17​

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Let assume that

  • First number be x

and

  • Second number be y.

So, given that,

\rm :\longmapsto\:x + y = 20

\rm \implies\:\boxed{ \tt{ \: y \:  =  \: 20 \:  -  \: x \: }} \:  -  -  - (1)

Now, we have to find the values of x and y, such that sum of their squares is minimum.

Let assume that

\rm :\longmapsto\:S =  {x}^{2} +  {y}^{2}

On substituting the value of y, we get

\rm :\longmapsto\:S =  {x}^{2} +  {(20 - x)}^{2}

\rm :\longmapsto\:S =  {x}^{2} +  400 +  {x}^{2}  - 40x

\rm :\longmapsto\:S = 2{x}^{2} +  400   - 40x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}S =\dfrac{d}{dx}( 2{x}^{2} +  400   - 40x )\:

\rm :\longmapsto\:\dfrac{dS}{dx}=4x + 0 - 40

\rm :\longmapsto\:\dfrac{dS}{dx}=4x- 40  -  -  - (2)

For maxima or minima, we have

\rm :\longmapsto\:\dfrac{dS}{dx}=0

\rm :\longmapsto\:4x - 40 = 0

\rm :\longmapsto\:4x  =  40

\bf\implies \:\boxed{ \tt{ \: x \:  =  \: 10 \: }}

From equation (2), we have

\rm :\longmapsto\:\dfrac{dS}{dx}=4x- 40

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} S}{d {x}^{2} }=4

\rm :\longmapsto\:\dfrac{ {d}^{2} S}{d {x}^{2} } > 0

\bf\implies \:S \: is \: minimum \: when \: x = 10

On substituting x = 10, in equation (1), we have

\rm :\longmapsto\:y = 20 - 10

\bf\implies \:\boxed{ \tt{ \: y \:  =  \: 10 \: }}

Hence,

  • Option (a) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

The function f (x) is maximum when f''(x) < 0.

The function f (x) is minimum when f''(x) > 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Answered by XxitsmrseenuxX
0

Answer:

\large\underline{\sf{Solution-}}

Let assume that

First number be x

and

Second number be y.

So, given that,

\rm :\longmapsto\:x + y = 20

\rm \implies\:\boxed{ \tt{ \: y \:  =  \: 20 \:  -  \: x \: }} \:  -  -  - (1)

Now, we have to find the values of x and y, such that sum of their squares is minimum.

Let assume that

\rm :\longmapsto\:S =  {x}^{2} +  {y}^{2}

On substituting the value of y, we get

\rm :\longmapsto\:S =  {x}^{2} +  {(20 - x)}^{2}

\rm :\longmapsto\:S =  {x}^{2} +  400 +  {x}^{2}  - 40x

\rm :\longmapsto\:S = 2{x}^{2} +  400   - 40x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}S =\dfrac{d}{dx}( 2{x}^{2} +  400   - 40x )\:

\rm :\longmapsto\:\dfrac{dS}{dx}=4x + 0 - 40

\rm :\longmapsto\:\dfrac{dS}{dx}=4x- 40  -  -  - (2)

For maxima or minima, we have

\rm :\longmapsto\:\dfrac{dS}{dx}=0

\rm :\longmapsto\:4x - 40 = 0

\rm :\longmapsto\:4x  =  40

\bf\implies \:\boxed{ \tt{ \: x \:  =  \: 10 \: }}

From equation (2), we have

\rm :\longmapsto\:\dfrac{dS}{dx}=4x- 40

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} S}{d {x}^{2} }=4

\rm :\longmapsto\:\dfrac{ {d}^{2} S}{d {x}^{2} } &gt; 0

\bf\implies \:S \: is \: minimum \: when \: x = 10

On substituting x = 10, in equation (1), we have

\rm :\longmapsto\:y = 20 - 10

\bf\implies \:\boxed{ \tt{ \: y \:  =  \: 10 \: }}

Hence,

Option (a) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

The function f (x) is maximum when f''(x) < 0.

The function f (x) is minimum when f''(x) > 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions