Math, asked by sah825486, 1 day ago

if the sum of two numbers is a(1-a) and their ratio is-x:1 , find the number?​

Answers

Answered by sg6685923
1

Answer:

byyy i can't help you byyyyyyy

Step-by-step explanation:

byyyyy

Answered by UniqueOne07
3

Let, the two numbers are x and y.

Let, the two numbers are x and y.According to the first conditions,

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)Subtracting equation (2) from equation (3),

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)Subtracting equation (2) from equation (3),           ⇒11x−5y−10x+5y=24+10

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)Subtracting equation (2) from equation (3),           ⇒11x−5y−10x+5y=24+10           ⇒x=34

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)Subtracting equation (2) from equation (3),           ⇒11x−5y−10x+5y=24+10           ⇒x=34Putting the value of x in equation (1),

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)Subtracting equation (2) from equation (3),           ⇒11x−5y−10x+5y=24+10           ⇒x=34Putting the value of x in equation (1),           ⇒2×34−y=−2⇒68−y=−2⇒y=70

Let, the two numbers are x and y.According to the first conditions,           y+2x+2=21⇒2x−y=−2⟶(1)and according to the second condition,           y−4x−4=115⇒11x−5y=24⟶(2)Multiplying equation (1) by 5 we get,           10x−5y=−10⟶(3)Subtracting equation (2) from equation (3),           ⇒11x−5y−10x+5y=24+10           ⇒x=34Putting the value of x in equation (1),           ⇒2×34−y=−2⇒68−y=−2⇒y=70Hence, the required numbers are 34,70.

Similar questions