if the sum of zeroes of polynomial is -1, where p(x)= (a+1) x square + (2a+3)x + 3a+4, find product of its zeroes
Answers
Answered by
4
Answer :
The given polynomial is
f (x) = (a + 1)x² + (2a + 3)x + (3a + 4)
If α and β are the zeroes of f (x),
α + β = - (2a + 3)/(a + 1)
⇒ - 1 = - (2a + 3)/(a + 1), given α + β = - 1
⇒ a + 1 = 2a + 3
⇒ 2a - a = 1 - 3
⇒ a = - 2
Now,
αβ = (3a + 4)/(a + 1)
= {3 (- 2) + 4}/(- 2 + 1)
= (- 6 + 4)/(- 1)
= (- 2)/(- 1)
= 2
∴ The product of its zeroes is 2
#MarkAsBrainliest
The given polynomial is
f (x) = (a + 1)x² + (2a + 3)x + (3a + 4)
If α and β are the zeroes of f (x),
α + β = - (2a + 3)/(a + 1)
⇒ - 1 = - (2a + 3)/(a + 1), given α + β = - 1
⇒ a + 1 = 2a + 3
⇒ 2a - a = 1 - 3
⇒ a = - 2
Now,
αβ = (3a + 4)/(a + 1)
= {3 (- 2) + 4}/(- 2 + 1)
= (- 6 + 4)/(- 1)
= (- 2)/(- 1)
= 2
∴ The product of its zeroes is 2
#MarkAsBrainliest
Answered by
5
Heya !!!
P(X) = (A + 1)X² + ( 2A + 3)X + 3A +4
Here,
A = ( A + 1) , B = ( 2A +3) and C = 3A +4
Sum of zeroes = - B/A
Sum of zeroes = - (2A + 3) / ( A + 1)
-1 = -2A - 3/ A +1
-1( A +1) = -2A -3
-A - 1 = -2A -3
-2A + A = -1 +3
-A = 2
A = -2
And,
Product of zeroes = C/A
Alpha × Beta = 3A +4 / ( A +1)
=> 3 × -2 + 4 / ( -2 + 1)
=> -6 + 4 / -1
=> -2/-1
=> 2
Hence,
Product of zeroes = 2
HOPE IT WILL HELP YOU..... :-)
P(X) = (A + 1)X² + ( 2A + 3)X + 3A +4
Here,
A = ( A + 1) , B = ( 2A +3) and C = 3A +4
Sum of zeroes = - B/A
Sum of zeroes = - (2A + 3) / ( A + 1)
-1 = -2A - 3/ A +1
-1( A +1) = -2A -3
-A - 1 = -2A -3
-2A + A = -1 +3
-A = 2
A = -2
And,
Product of zeroes = C/A
Alpha × Beta = 3A +4 / ( A +1)
=> 3 × -2 + 4 / ( -2 + 1)
=> -6 + 4 / -1
=> -2/-1
=> 2
Hence,
Product of zeroes = 2
HOPE IT WILL HELP YOU..... :-)
Similar questions